Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Cell Physiol ; 235(4): 3646-3656, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31559639

RESUMO

It is well known that exposure of double-stranded RNA (dsRNA) to intestine immediately induces villus damage with severe diarrhea, which is mediated by toll-like receptor 3 signaling activation. However, the role of intestinal stem cells (ISCs) remains obscure during the pathology. In the present study, polyinosinic-polycytidylic acid (poly[I:C]), mimicking viral dsRNA, was used to establish intestinal damage model. Mice were acutely and chronically exposed to poly(I:C), and ISCs in jejunum were analyzed. The results showed that the height of villus was shorter 48 hr after acute poly(I:C) exposure compared with that of controls, while chronic poly(I:C) treatment increased both villus height and crypt depth in jejunum compared with control animals. The numbers of ISCs in jejunum were significantly increased after acute and chronic poly(I:C) exposure. Poly (I:C)-stimulated ISCs have stronger capacities to differentiate into intestine endocrine cells. Mechanistically, poly(I:C) treatment increased expression of Stat1 and Axin2 in the intestinal crypt, which was along with increased expression of Myc, Bcl2, and ISC proliferation. These findings suggest that dsRNA exposure could induce ISC proliferation to ameliorate dsRNA-induced intestinal injury.


Assuntos
Mucosa Intestinal/crescimento & desenvolvimento , Poli I-C/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Células-Tronco/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proteína Axina/genética , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Jejuno/efeitos dos fármacos , Jejuno/crescimento & desenvolvimento , Camundongos , RNA de Cadeia Dupla/efeitos dos fármacos , Fator de Transcrição STAT1/genética , Transdução de Sinais , Receptor 3 Toll-Like/genética
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220174, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37122214

RESUMO

Atrial fibrillation (AF) is a very common cardiac arrhythmia with an estimated prevalence of 33.5 million patients globally. It is associated with an increased risk of death, stroke and peripheral embolism. Although genetic studies have identified a growing number of genes associated with AF, the definitive impact of these genetic findings is yet to be established. Several mechanisms, including electrical, structural and neural remodelling of atrial tissue, have been proposed to contribute to the development of AF. Despite over a century of exploration, the molecular and cellular mechanisms underlying AF have not been fully established. Current antiarrhythmic drugs are associated with a significant rate of adverse events and management of AF using ablation is not optimal, especially in cases of persistent AF. This review discusses recent advances in our understanding and management of AF, including new concepts of epidemiology, genetics and pathophysiological mechanisms. We review the current status of antiarrhythmic drug therapy for AF, new potential agents, as well as mechanism-based AF ablation. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/etiologia , Fibrilação Atrial/genética , Pesquisa Translacional Biomédica , Antiarrítmicos/uso terapêutico , Frequência Cardíaca
3.
Front Physiol ; 12: 700129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335306

RESUMO

Intestine is composed of various types of cells including absorptive epithelial cells, goblet cells, endocrine cells, Paneth cells, immunological cells, and so on, which play digestion, absorption, neuroendocrine, immunological function. Intestine is innervated with extrinsic autonomic nerves and intrinsic enteric nerves. The neurotransmitters and counterpart receptors are widely distributed in the different intestinal cells. Intestinal autonomic nerve system includes sympathetic and parasympathetic nervous systems, which regulate cellular proliferation and function in intestine under physiological and pathophysiological conditions. Presently, distribution and functional characteristics of autonomic nervous system in intestine were reviewed. How autonomic nervous system regulates intestinal cell proliferation was discussed. Function of autonomic nervous system on intestinal diseases was extensively reviewed. It might be helpful to properly manipulate autonomic nervous system during treating different intestinal diseases.

4.
BMC Cancer ; 8: 38, 2008 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-18237408

RESUMO

BACKGROUND: Osteopontin (OPN) is associated with human cancers, and circulating blood OPN may have diagnostic or prognostic value in clinical oncology. METHODS: To evaluate OPN as a cancer biomarker, we generated and characterized five novel mouse monoclonal antibodies against the human full-length OPN (fl-OPN). Epitopes recognized by four antibodies (2C5, 2F10, 2H9, and 2E11) map to N-terminal OPN (aa1-166); one (1F11) maps to C-terminal OPN (aa167-314). These antibodies recognize recombinant and native OPN by ELISA and immunoblot, cross reacting with human and mouse OPN. Two of these novel antibodies (2F10 and 1F11) were used to develop a quantitative enzyme linked immunosorbent assay (ELISA) for fl-OPN. RESULTS: In comparison with commercially available ELISAs, our assay had high accuracy in measuring fl-OPN standards, and high sensitivity. Specifically, our ELISA has a linear dose response between 0.078 ng/ml-10 ng/ml, with a sensitivity of 13.9 pg/ml. We utilized this assay to quantify fl-OPN in the plasma of healthy volunteers in comparison with patients with metastatic breast cancer. The average circulating plasma fl-OPN in healthy volunteers was 1.2 ng/ml, compared to 4.76 ng/ml in patients with metastatic breast cancer (p = 0.0042). Although the increase in fl-OPN in cancer patients is consistent with previous studies, the measured quantity varied greatly between all existing fl-OPN ELISAs. CONCLUSION: Because OPN is a complex molecule with diversity from alternative splicing, post-translational modification, extracellular proteolytic modification, and participation in protein complexes, we suggest that further understanding of specific isoform recognition of multiple OPN species is essential for future studies of OPN biomarker utility.


Assuntos
Anticorpos Monoclonais/biossíntese , Neoplasias da Mama/diagnóstico , Carcinoma Ductal/diagnóstico , Carcinoma Lobular/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Osteopontina/análise , Osteopontina/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Afinidade de Anticorpos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Carcinoma Ductal/sangue , Carcinoma Ductal/patologia , Carcinoma Lobular/sangue , Carcinoma Lobular/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Osteopontina/sangue , Fragmentos de Peptídeos/imunologia , Kit de Reagentes para Diagnóstico , Sensibilidade e Especificidade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa