Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 15(45): e1903521, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31532895

RESUMO

Antimony is a competitive and promising anode material for sodium-ion batteries (SIBs) due to its high theoretical capacity. However, the poor rate capability and fast capacity fading greatly restrict its practical application. To address the above issues, a facile and eco-friendly sacrificial template method is developed to synthesize hollow Sb nanoparticles impregnated in open carbon boxes (Sb HPs@OCB). The as-obtained Sb HPs@OCB composite exhibits excellent sodium storage properties even when operated at an elevated temperature of 50 °C, delivering a robust rate capability of 345 mAh g-1 at 16 A g-1 and rendering an outstanding reversible capacity of 187 mAh g-1 at a high rate of 10 A g-1 after 300 cycles. Such superior electrochemical performance of the Sb HPs@OCB can be attributed to the comprehensive characteristics of improved kinetics derived from hollow Sb nanoparticles impregnated into 2D carbon nanowalls, the existence of robust SbOC bond, and enhanced pseudocapacitive behavior. All those factors enable Sb HPs@OCB great potential and distinct merit for large-scale energy storage of SIBs.

2.
Small Methods ; 7(9): e2300314, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37254260

RESUMO

Composite solid-state electrolyte (CSE) incorporated with fluorine-containing functional additives usually endows the assembled cell with improved electrochemical performance by forming stable electrode/electrolyte interfaces. However, most of fluorine-containing additives are prone to hydrolysis, which is not suitable for the large-scale preparation of CSEs. In this work, an antihydrolysis and fluorine-containing additive of magnesium 2,3,4,5,6-pentafluorophenylacetate (MgPFPAA) is successfully synthesized and then used to regulate the properties of the electrode/electrolyte interfaces of the all-solid-state lithium batteries (ASSLBs). The antihydrolysis property of MgPFPAA facilitates the large-scale preparation of the ultrathin CSEs in atmospheric environment. Both theoretical calculations and experimental results indicate that MgPFPAA can effectively improve the composition and structure of the generated solid electrolyte interface film by providing rich F sources and Mg2+ , thus leading to a stable CSE/Li interface. Furthermore, an ultrathin PEO/PVDF-based CSE (≈30 µm) functionalized by this novel MgPFPAA additive enables the assembled LiFePO4 -based ASSLB with greatly enhanced electrochemical performances, with high discharge specific capacity of 93.7 mAh g-1 at 10 C and a high capacity retention of 74.9% after 1500 cycles at 5.0 C. Also, this MgPFPAA functionalized CSE can be compatible with the high-areal-capacity LiFePO4 and the high-voltage LiNi0.8 Co0.1 Mn0.1 O2 cathodes.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38048569

RESUMO

Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) are favorable for all-solid-state lithium metal batteries (ASSLBs) to ensure safety and enhance energy density. However, their narrow work windows and unstable electrode/electrolyte interfaces hinder their practical application in high-voltage ASSLBs. Although introducing additives in SPEs has been proven to be effective to address the above issues, it could hardly optimize both cathode and anode interfaces by an individual additive. Herein, heterogeneously double-layer SPEs are constructed with two typical additives (LiPO2F2 and LiFSI), which are used to modify the LiNi0.6Co0.2Mn0.2O2 (NCM)-cathode/electrolyte interface (CEI) and lithium-anode/solid electrolyte interface (SEI), and further understand their respective mechanism in enhancing the capacity and cycling stability of ASSLBs. Specifically, LiPO2F2 not only leads to a uniform CEI layer to prevent the oxidation decomposition of PEO and LiTFSI but also ensures fast Li+ diffusion at high voltage (>3.9 V), improving the rate performances and life spans of the cells. The LiFSI contributes to a stable SEI layer with rich LiF, suppressing the growth of lithium dendrites and maximizing the specific capacity for ASSLBs. Integrating the advantages of the two functional molecules, the optimized ASSLB displays an excellent capacity of 141.4 mAh g-1 at 1C and an outstanding capacity retention of 81.6% after 400 cycles when using the NCM cathode, even reaching 154.2 mAh g-1 at 0.1 mA cm-2 with a high mass loading (6.4 mg cm-2). Additionally, the bilayer SPEs also match well with a LiFePO4 electrode with a high mass loading of 11.0 mg cm-2, displaying a high capacity of 155.7 mAh g-1 at 0.1 mA cm-2.

4.
J Colloid Interface Sci ; 608(Pt 1): 470-481, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34628315

RESUMO

The sluggish redox kinetic and shuttle effect of polysulfides still obstruct the commercial application of lithium-sulfur (Li-S) batteries. Herein, a nanocomposite consisting of well-dispersed and lamellar-like shape CoS anchored on g-C3N4 nanosheets (CoS@g-C3N4) is prepared firstly, and then it is integrated on a polypropylene membrane combined with little conductive Ketjen black (KB) to fabricate a multifunctional and quite thin interlayer, with a thickness of only âˆ¼ 2.1 um and areal mass loading of âˆ¼ 0.07 mg·cm-2. The as-prepared interlayer firstly can capture polysulfides by Li-N bond as well as Lewis acid-base interaction between CoS and polysulfide anions (Sn2-), and more importantly, it also displays a positive effect on catalyzing the redox conversion of intermediate polysulfides. As expected, a Li-S cell assembled with this modified separator and high sulfur content cathode displays an excellent electrochemical performance, with specific capacity of âˆ¼ 1290 mAh g-1 at 0.2C and a low fading rate of 0.03% per cycle after 500 cycles at 1.0C. Furthermore, a high sulfur mass loading of âˆ¼ 4.0 mg·cm-2 electrode paired with this multifunctional separator exhibits a stable specific capacity of âˆ¼ 600 mAh g-1 after 250 cycles under 0.1C. This work can give some guides to rational design a quite thin and light interlayer for improving the utilization of sulfur species, with little damage to the energy density and Li ion transportation in Li-S batteries.

5.
ACS Appl Mater Interfaces ; 14(50): 55709-55718, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36472852

RESUMO

Lithium (Li) metal is considered as one of the attractive anodes for next-generation high-energy-density batteries due to its ultrahigh theoretical specific capacity and low potential. However, many great challenges including uncontrolled dendrite growth and undesired side reactions during repeated cycling still seriously hinder its practical application in Li metal secondary batteries. Herein, we report the hexachloro-1,3-butadiene (HCBD) molecule as a functional additive to stabilize the Li anode by forming a stable solid electrolyte interface (SEI) layer with high Li ion conductivity via in situ surface and electrochemical reactions. Density functional theory calculations demonstrate that HCBD can preferentially react with the Li anode, which generates an ionic conducting species (LiCl) into an SEI layer. The LiCl-rich SEI layer effectively regulates Li+ deposition/stripping kinetics and then induces uniform nucleation of Li+ and reduces the side reactions between the Li anode and electrolyte. With an optimal amount of HCBD in an ether-based electrolyte, an excellent cycling lifespan (7000 h) was achieved with a low hysteresis voltage of ∼10 mV at 1.0 mA cm-2 in a Li||Li symmetrical cell. Furthermore, the LiFePO4-based cell with the additive-functionalized Li anode displays obviously improved cycling stability (with a high specific capacity of 141.1 mAh g-1 after 350 cycles at 1 C).

6.
ACS Appl Mater Interfaces ; 13(48): 57380-57391, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34839662

RESUMO

Poly(ethylene oxide) (PEO)-based composite solid electrolytes (CSEs) are considered as one of the most promising candidates for all-solid-state lithium batteries (ASSLBs). However, a key challenge for their further development is to solve the main issues of low ionic conductivity and poor mechanical strength, which can lead to insufficient capacity and stability. Herein, ß-cyclodextrin (ß-CD) is first demonstrated as a multifunctional filler that can form a continuous hydrogen bond network with the ether oxygen unit from the PEO matrix, thus improving the comprehensive performances of the PEO-based CSE. By relevant characterizations, it is demonstrated that ß-CD is uniformly dispersed into the PEO substrate, inducing adequate dissociation of lithium salt and enhancing mechanical strength through hydrogen bond interactions. In a Li/Li symmetric battery, the ß-CD-integrated PEO-based (PEO-LiTFSI-15% ß-CD) CSE works well at a critical current density up to 1.0 mA cm-2 and retains stable lithium plating/stripping for more than 1000 h. Such reliable properties also enable its superior performance in LiFePO4-based ASSLBs, with specific capacities of 123.6 and 114.0 mA h g-1 as well as about 100 and 81.8% capacity retention over 300 and 700 cycles at 1 and 2 C (1 C = 170 mA g-1), respectively.

7.
ACS Appl Mater Interfaces ; 12(1): 527-537, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31820908

RESUMO

Investigations into conversion-type materials such as transition-metal oxides have dominated in energy-storage systems, especially for lithium ion batteries in recent years. A common understanding of taking account of high energy density and high power density allows us to design reasonable electrodes. In this study, the unique Fe3O4@nitrogen-doped carbon (denoted as Fe3O4@NC) nanocapsule with self-formed channels was synthesized based on a facile hydrothermal-coating-annealing route. With respect to the effect of this rational architecture on lithium-storage performance, excellent behavior (a high reversible capacity of 480 mAh g-1) could be maintained at 20 A g-1 during 1000 cycles, with an average Coulombic efficiency of 99.97%. It also means that such a Fe3O4@NC electrode can meet a fast-charge challenge (end-of-charge within ∼2 min). By a series of investigations, we certainly considered that uniform carbon coating improved electrical conductivity and acted as a buffer layer to accommodate volume variations of Fe3O4 nanoparticles during cycling. It is more interesting that self-formed channels can effectively shorten the ion diffusion path and provide a necessary space to buffer volume expansion as well. Benefiting from these synergetic advantages, this Fe3O4@NC nanocapsule also delivered outstanding electrochemical performances in full cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa