Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurosci Bull ; 39(8): 1210-1228, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36622575

RESUMO

The chronic use of morphine and other opioids is associated with opioid-induced hypersensitivity (OIH) and analgesic tolerance. Among the different forms of OIH and tolerance, the opioid receptors and cell types mediating opioid-induced mechanical allodynia and anti-allodynic tolerance remain unresolved. Here we demonstrated that the loss of peripheral µ-opioid receptors (MORs) or MOR-expressing neurons attenuated thermal tolerance, but did not affect the expression and maintenance of morphine-induced mechanical allodynia and anti-allodynic tolerance. To confirm this result, we made dorsal root ganglia-dorsal roots-sagittal spinal cord slice preparations and recorded low-threshold Aß-fiber stimulation-evoked inputs and outputs in superficial dorsal horn neurons. Consistent with the behavioral results, peripheral MOR loss did not prevent the opening of Aß mechanical allodynia pathways in the spinal dorsal horn. Therefore, the peripheral MOR signaling pathway may not be an optimal target for preventing mechanical OIH and analgesic tolerance. Future studies should focus more on central mechanisms.


Assuntos
Hiperalgesia , Morfina , Humanos , Morfina/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Analgésicos Opioides/farmacologia , Neurônios/metabolismo , Transdução de Sinais
2.
Neurosci Bull ; 39(8): 1229-1245, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36637789

RESUMO

Mechanical allodynia (MA), including punctate and dynamic forms, is a common and debilitating symptom suffered by millions of chronic pain patients. Some peripheral injuries result in the development of bilateral MA, while most injuries usually led to unilateral MA. To date, the control of such laterality remains poorly understood. Here, to study the role of microglia in the control of MA laterality, we used genetic strategies to deplete microglia and tested both dynamic and punctate forms of MA in mice. Surprisingly, the depletion of central microglia did not prevent the induction of bilateral dynamic and punctate MA. Moreover, in dorsal root ganglion-dorsal root-sagittal spinal cord slice preparations we recorded the low-threshold Aß-fiber stimulation-evoked inputs and outputs of superficial dorsal horn neurons. Consistent with behavioral results, microglial depletion did not prevent the opening of bilateral gates for Aß pathways in the superficial dorsal horn. This study challenges the role of microglia in the control of MA laterality in mice. Future studies are needed to further understand whether the role of microglia in the control of MA laterality is etiology-or species-specific.


Assuntos
Hiperalgesia , Microglia , Camundongos , Animais , Hiperalgesia/metabolismo , Microglia/metabolismo , Modelos Animais de Doenças , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Gânglios Espinais/metabolismo
3.
Cell Rep ; 42(4): 112300, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36952340

RESUMO

Mechanical allodynia (MA) represents one prevalent symptom of chronic pain. Previously we and others have identified spinal and brain circuits that transmit or modulate the initial establishment of MA. However, brain-derived descending pathways that control the laterality and duration of MA are still poorly understood. Here we report that the contralateral brain-to-spinal circuits, from Oprm1 neurons in the lateral parabrachial nucleus (lPBNOprm1), via Pdyn neurons in the dorsal medial regions of hypothalamus (dmHPdyn), to the spinal dorsal horn (SDH), act to prevent nerve injury from inducing contralateral MA and reduce the duration of bilateral MA induced by capsaicin. Ablating/silencing dmH-projecting lPBNOprm1 neurons or SDH-projecting dmHPdyn neurons, deleting Dyn peptide from dmH, or blocking spinal κ-opioid receptors all led to long-lasting bilateral MA. Conversely, activation of dmHPdyn neurons or their axonal terminals in SDH can suppress sustained bilateral MA induced by lPBN lesion.


Assuntos
Hiperalgesia , Medula Espinal , Camundongos , Animais , Hiperalgesia/metabolismo , Medula Espinal/metabolismo , Sistema Nervoso Central/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Neurônios/metabolismo , Hipotálamo/metabolismo
4.
Curr Med Chem ; 26(30): 5598-5608, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29745323

RESUMO

Brucellosis is a debilitating febrile illness caused by an intracellular Brucella. The disease is distributed in humans and animals widely, especially in developing countries. Ten species are included in the genus Brucella nowadays; four species of them are pathogenic to humans, which make brucellosis a zoonosis with more than 500,000 new cases reported annually. For human brucellosis, the most pathogenic species is B. melitensis followed by B. suis, while B. abortus is the mildest type of brucellosis. The infection mechanism of Brucella is complicated and mostly relies on its virulence factors. The therapy of the disease contains vaccination and antibiotic. However, there are some defects in currently available vaccines such as the lower protective level and safety. Thus, safe and efficient vaccines for brucellosis are still awaited. The dual therapy of antibacterial is effective in the treatment of brucellosis if a rapid and exact detection method is found.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Vacinas Bacterianas/imunologia , Pesquisa Biomédica , Brucella/efeitos dos fármacos , Brucelose/terapia , Animais , Antibacterianos/química , Brucella/imunologia , Brucelose/imunologia , Humanos
6.
Curr Gene Ther ; 16(4): 256-262, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28590889

RESUMO

It has been reported that DOK3 protein negatively regulates LPS responses and endotoxin tolerance in mice. However, the role of DOK3 in the development of acute respiratory distress syndrome (ARDS) remains unknown. In this study, we showed that DOK3 is degraded in the lung tissues of LPS-induced ARDS. Through lentivirus transduction containing DOK3(K27R) via the intranasal route, we created a mice model, in which DOK3 maintains stable expression. We found that the forced DOK3 expression significantly attenuated LPS-induced pulmonary histological alterations, inflammatory cells infiltration, lung edema, as well as the generation of inflammatory cytokines TNFα, IL- 1ß and IL-6 in BALF of LPS-induced ARDS mice. In addition, DOK3 expression apparently suppressed LPS-induced NF-κB and ERK activation. These data suggested that DOK3 expression negatively regulates the development of LPS-induced ARDS in mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Pulmão/patologia , Síndrome do Desconforto Respiratório/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Peroxidase/metabolismo , Proteólise , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/metabolismo , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa