Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Am Chem Soc ; 146(26): 17866-17877, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38916547

RESUMO

Construction of mesoporous frameworks by noncovalent bonding still remains a great challenge. Here, we report a micelle-directed nanocluster modular self-assembly approach to synthesize a novel type of two-dimensional (2-D) hydrogen-bonded mesoporous frameworks (HMFs) for the first time based on nanoscale cluster units (1.0-3.0 nm in size). In this 2-D structure, a mesoporous cluster plate with ∼100 nm in thickness and several micrometers in size can be stably formed into uniform hexagonal arrays. Meanwhile, such a porous plate consists of several (3-4) dozens of layers of ultrathin mesoporous cluster nanosheets. The size of the mesopores can be precisely controlled from 11.6 to 18.5 nm by utilizing the amphiphilic diblock copolymer micelles with tunable block lengths. Additionally, the pore configuration of the HMFs can be changed from spherical to cylindrical by manipulating the concentration of the micelles. As a general approach, various new HMFs have been achieved successfully via a modular self-assembly of nanoclusters with switchable configurations (nanoring, Keggin-type, and cubane-like) and components (titanium-oxo, polyoxometalate, and organometallic clusters). As a demonstration, the titanium-oxo cluster-based HMFs show efficient photocatalytic activity for hydrogen evolution (3.6 mmol g-1h-1), with a conversion rate about 2 times higher than that of the unassembled titanium-oxo clusters (1.5 mmol g-1h-1). This demonstrates that HMFs exhibited enhanced photocatalytic activity compared with unassembled titanium-oxo clusters units.

2.
J Am Chem Soc ; 146(30): 20857-20867, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39025826

RESUMO

Asymmetric soft-stiff patch nanohybrids with small size, spatially separated organics and inorganics, controllable configuration, and appealing functionality are important in applications, while the synthesis remains a great challenge. Herein, based on polymeric single micelles (the smallest assembly subunit of mesoporous materials), we report a dynamic surface-mediated anisotropic assembly approach to fabricate a new type of small asymmetric organic/inorganic patch nanohybrid for the first time. The size of this asymmetric organic/inorganic nanohybrid is ∼20 nm, which contains dual distinct subunits of a soft organic PS-PVP-PEO single micelle nanosphere (12 nm in size and 632 MPa in Young' modulus) and stiff inorganic SiO2 nanobulge (∼8 nm, 2275 MPa). Moreover, the number of SiO2 nanobulges anchored on each micelle can be quantitatively controlled (from 1 to 6) by dynamically tuning the density (fluffy or dense state) of the surface cap organic groups. This small asymmetric patch nanohybrid also exhibits a dramatically enhanced uptake level of which the total amount of intracellular endocytosis is about three times higher than that of the conventional nanohybrids.

3.
Environ Sci Technol ; 58(37): 16237-16247, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39241234

RESUMO

Life-cycle assessment (LCA) is one of the most widely applied methods for sustainability assessment. A main application of LCA is to compare alternative products to identify and promote those that are more environmentally friendly. Such comparative LCA studies often rest on, explicitly or implicitly, an idealized assumption, namely, 1:1 displacement between functionally equivalent products. However, product displacement in the real world is much more complicated, affected by various factors such as the rebound effect and policy schemes. Here, we quantitatively review studies that have considered these aspects to evaluate the magnitude and distribution of realistic displacement estimates across several major product categories (biofuels, electricity, electric vehicles, and recycled products). Results show that displacement ratios concentrate around 40-60%, suggesting considerable overestimation of the benefits of alternative products if the 1:1 displacement assumption was used. Overall, there have been a small number of modeling studies on realistic product displacement and their scopes were limited. Additional research is needed to cover more product categories and geographies and improve the modeling of market and policy complexities. As such research accumulates, their displacement estimates can form a database that can be drawn upon by comparative LCA studies to more accurately determine the environmental impacts of alternative products.


Assuntos
Reciclagem , Biocombustíveis , Modelos Teóricos , Meio Ambiente
4.
Angew Chem Int Ed Engl ; 63(23): e202403245, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38578838

RESUMO

The encapsulation of functional colloidal nanoparticles (100 nm) into single-crystalline ZSM-5 zeolites, aiming to create uniform core-shell structures, is a highly sought-after yet formidable objective due to significant lattice mismatch and distinct crystallization properties. In this study, we demonstrate the fabrication of a core-shell structured single-crystal zeolite encompassing an Fe3O4 colloidal core via a novel confinement stepwise crystallization methodology. By engineering a confined nanocavity, anchoring nucleation sites, and executing stepwise crystallization, we have successfully encapsulated colloidal nanoparticles (CN) within single-crystal zeolites. These grafted sites, alongside the controlled crystallization process, compel the zeolite seed to nucleate and expand along the Fe3O4 colloidal nanoparticle surface, within a meticulously defined volume (1.5×107≤V≤1.3×108 nm3). Our strategy exhibits versatility and adaptability to an array of zeolites, including but not restricted to ZSM-5, NaA, ZSM-11, and TS-1 with polycrystalline zeolite shell. We highlight the uniformly structured magnetic-nucleus single-crystalline zeolite, which displays pronounced superparamagnetism (14 emu/g) and robust acidity (~0.83 mmol/g). This innovative material has been effectively utilized in a magnetically stabilized bed (MSB) reactor for the dehydration of ethanol, delivering an exceptional conversion rate (98 %), supreme ethylene selectivity (98 %), and superior catalytic endurance (in excess of 100 hours).

5.
Chem Rev ; 121(23): 14349-14429, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34609850

RESUMO

Functional mesoporous materials have gained tremendous attention due to their distinctive properties and potential applications. In recent decades, the self-assembly of micelles and framework precursors into mesostructures on the liquid-solid, liquid-liquid, and gas-liquid interface has been explored in the construction of functional mesoporous materials with diverse compositions, morphologies, mesostructures, and pore sizes. Compared with the one-phase solution synthetic approach, the introduction of a two-phase interface in the synthetic system changes self-assembly behaviors between micelles and framework species, leading to the possibility for the on-demand fabrication of unique mesoporous architectures. In addition, controlling the interfacial tension is critical to manipulate the self-assembly process for precise synthesis. In particular, recent breakthroughs based on the concept of the "monomicelles" assembly mechanism are very promising and interesting for the synthesis of functional mesoporous materials with the precise control. In this review, we highlight the synthetic strategies, principles, and interface engineering at the macroscale, microscale, and nanoscale for oriented interfacial assembly of functional mesoporous materials over the past 10 years. The potential applications in various fields, including adsorption, separation, sensors, catalysis, energy storage, solar cells, and biomedicine, are discussed. Finally, we also propose the remaining challenges, possible directions, and opportunities in this field for the future outlook.


Assuntos
Engenharia , Micelas , Catálise , Porosidade
6.
J Am Chem Soc ; 144(13): 6091-6099, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35316600

RESUMO

Synthesis of hierarchically porous structures with uniform spatial gradient and structure reinforcement effect still remains a great challenge. Herein, we report the synthesis of zeolite@mesoporous silica core-shell nanospheres (ZeoA@MesoS) with a gradient porous structure through a micellar dynamic assembly strategy. In this case, we find that the size of composite micelles can be dynamically changed with the increase of swelling agents, which in situ act as the building blocks for the modular assembly of gradient mesostructures. The ZeoA@MesoS nanospheres are highly dispersed in solvents with uniform micropores in the inner core and a gradient tubular mesopore shell. As a nanoreactor, such hierarchically gradient porous structures enable the capillary-directed fast mass transfer from the solutions to inner active sites. As a result, the ZeoA@MesoS catalysts deliver a fabulous catalytic yield of ∼75% on the esterification of long-chain carboxylic palmitic acids and high stability even toward water interference, which can be well trapped by the ZeoA core, pushing forward the chemical equilibrium. Moreover, a very remarkable catalytic conversion on the C-H arylation reaction of large N-methylindole is achieved (∼98%) by a Pd-immobilized ZeoA@MesoS catalyst. The water tolerance feature gives a notable enhancement of 26% in catalytic yield compared to the Pd-dendritic mesoporous silica without the zeolite core.


Assuntos
Nanosferas , Catálise , Micelas , Nanosferas/química , Porosidade , Dióxido de Silício/química
7.
J Am Chem Soc ; 144(45): 20964-20974, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36283036

RESUMO

Precise synthesis of well-ordered ultrathin nanowire arrays with tunable active surface, though attractive in optoelectronics, remains challenging to date. Herein, well-aligned sub-10 nm TiO2 nanowire arrays with controllable corrugated structure have been synthesized by a unique monomicelle-directed assembly method. The nanowires with an exceptionally small diameter of ∼8 nm abreast grow with an identical adjacent distance of ∼10 nm, forming vertically aligned arrays (∼800 nm thickness) with a large surface area of ∼102 m2 g-1. The corrugated structure consists of bowl-like concave structures (∼5 nm diameter) that are closely arranged along the axis of the ultrathin nanowires. And the diameter of the concave structures can be finely manipulated from ∼2 to 5 nm by simply varying the reaction time. The arrays exhibit excellent charge dynamic properties, leading to a high applied bias photon-to-current efficiency up to 1.4% even at a very low potential of 0.41 VRHE and a superior photocurrent of 1.96 mA cm-2 at 1.23 VRHE. Notably, an underlying mechanism of the hole extraction effect for concave walls is first clarified, demonstrating the exact role of concave walls as the hole collection centers for efficient water splitting.

8.
J Am Chem Soc ; 144(5): 2208-2217, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35099956

RESUMO

Iridium (Ir)-based electrocatalysts are widely explored as benchmarks for acidic oxygen evolution reactions (OERs). However, further enhancing their catalytic activity remains challenging due to the difficulty in identifying active species and unfavorable architectures. In this work, we synthesized ultrathin Ir-IrOx/C nanosheets with ordered interlayer space for enhanced OER by a nanoconfined self-assembly strategy, employing block copolymer formed stable end-merged lamellar micelles. The interlayer distance of the prepared Ir-IrOx/C nanosheets was well controlled at ∼20 nm and Ir-IrOx nanoparticles (∼2 nm) were uniformly distributed within the nanosheets. Importantly, the fabricated Ir-IrOx/C electrocatalysts display one of the lowest overpotential (η) of 198 mV at 10 mA cm-2geo during OER in an acid medium, benefiting from their features of mixed-valence states, rich electrophilic oxygen species (O(II-δ)-), and favorable mesostructured architectures. Both experimental and computational results reveal that the mixed valence and O(II-δ)- moieties of the 2D mesoporous Ir-IrOx/C catalysts with a shortened Ir-O(II-δ)- bond (1.91 Å) is the key active species for the enhancement of OER by balancing the adsorption free energy of oxygen-containing intermediates. This strategy thus opens an avenue for designing high performance 2D ordered mesoporous electrocatalysts through a nanoconfined self-assembly strategy for water oxidation and beyond.

9.
J Am Chem Soc ; 144(26): 11767-11777, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731994

RESUMO

Constructing hierarchical three-dimensional (3D) mesostructures with unique pore structure, controllable morphology, highly accessible surface area, and appealing functionality remains a great challenge in materials science. Here, we report a monomicelle interface confined assembly approach to fabricate an unprecedented type of 3D mesoporous N-doped carbon superstructure for the first time. In this hierarchical structure, a large hollow locates in the center (∼300 nm in diameter), and an ultrathin monolayer of spherical mesopores (∼22 nm) uniformly distributes on the hollow shells. Meanwhile, a small hole (4.0-4.5 nm) is also created on the interior surface of each small spherical mesopore, enabling the superstructure to be totally interconnected. Vitally, such interconnected porous supraparticles exhibit ultrahigh accessible surface area (685 m2 g-1) and good underwater aerophilicity due to the abundant spherical mesopores. Additionally, the number (70-150) of spherical mesopores, particle size (22 and 42 nm), and shell thickness (4.0-26 nm) of the supraparticles can all be accurately manipulated. Besides this spherical morphology, other configurations involving 3D hollow nanovesicles and 2D nanosheets were also obtained. Finally, we manifest the mesoporous carbon superstructure as an advanced electrocatalytic material with a half-wave potential of 0.82 V (vs RHE), equivalent to the value of the commercial Pt/C electrode, and notable durability for oxygen reduction reaction (ORR).

10.
Mar Drugs ; 20(10)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36286455

RESUMO

Glycosaminoglycan from Apostichopus japonicus (AHG) and its depolymerized fragments (DAHGs) are anticoagulant fucosylated chondroitin sulfate. The aim of this study was to further evaluate the anticoagulant and antithrombic activity of AHG and DAHGs, as well as reveal the dynamic relationship between exposure and effect in vivo. The results demonstrated that AHG100 (Mw~100 kDa), DAHG50 (Mw~50 kDa), and DAHG10 (Mw~10 kDa) exhibited potent anticoagulant activity by inhibiting intrinsic factor Xase complex (FXase) as well as antithrombin-dependent factor IIa (FIIa) and factor Xa (FXa). These glycosaminoglycans markedly prevented thrombosis formation and thrombin-induced platelet aggregation in a dose- and molecular weight-dependent manner in vitro and in vivo. The further bleeding time measurement indicated that DAHG10 exhibited obviously lower hemorrhage risks than native AHG100. Following oral administration, DAHG10 could be absorbed into blood, further dose-dependently prolonging activated partial thromboplastin time (APTT) and thrombin time (TT) as well as inhibiting FXa and FIIa partially through FXase. Anticoagulant activity was positively associated with plasma concentration following oral administration of DAHG10. Our study proposed a new point of view to understand the correlation between effects and exposure of fucosylated chondroitin sulfate as an effective and safe oral antithrombotic agent.


Assuntos
Anticoagulantes , Stichopus , Ratos , Animais , Anticoagulantes/farmacologia , Glicosaminoglicanos/farmacologia , Fator Xa , Coagulação Sanguínea , Trombina , Fibrinolíticos/farmacologia , Fator Intrínseco/farmacologia , Antitrombinas/farmacologia
11.
Nano Lett ; 21(14): 6071-6079, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34269590

RESUMO

Streamlined architectures with a low fluid-resistance coefficient have been receiving great attention in various fields. However, it is still a great challenge to synthesize streamlined architecture with tunable surface curvature at the nanoscale. Herein, we report a facile interfacial dynamic migration strategy for the synthesis of streamlined mesoporous nanotadpoles with varied architectures. These tadpole-like nanoparticles possess a big streamlined head and a slender tail, which exhibit large inner cavities (75-170 nm), high surface areas (424-488 m2 g-1), and uniform mesopore sizes (2.4-3.2 nm). The head curvature of the streamlined mesoporous nanoparticles can be well-tuned from ∼2.96 × 10-2 to ∼5.56 × 10-2 nm-1, and the tail length can also be regulated from ∼30 to ∼650 nm. By selectively loading the Fe3O4 catalyst in the cavity of the streamlined silica nanotadpoles, the H2O2-driven mesoporous nanomotors were designed. The mesoporous nanomotors with optimized structural parameters exhibit outstanding directionality and a diffusion coefficient of 8.15 µm2 s-1.


Assuntos
Nanopartículas , Dióxido de Silício , Catálise , Peróxido de Hidrogênio , Porosidade
12.
Angew Chem Int Ed Engl ; 61(27): e202203022, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411660

RESUMO

Mimicking natural nitrogenase to create highly efficient single-atom catalysts (SACs) for ambient N2 fixation is highly desired, but still challenging. Herein, S-coordinated Fe SACs on mesoporous TiO2 have been constructed by a lattice-confined strategy. The extended X-ray absorption fine structure and X-ray photoelectron spectroscopy spectra demonstrate that Fe atoms are anchored in TiO2 lattice via the FeS2 O2 coordination configuration. Theoretical calculations reveal that FeS2 O2 sites are the active centers for electrocatalytic nitrogen reduction reaction (NRR). Moreover, the finite element analysis shows that confinement of opened and ordered mesopores can facilitate the mass transport and offer an enlarged active surface area for NRR. As a result, this catalyst delivers a favorable NH3 yield rate of 18.3 µg h-1 mgcat. -1 with a high Faradaic efficiency of 17.3 % at -0.20 V versus a reversible hydrogen electrode. Most importantly, this lattice-confined strategy is universal and can also be applied to Ni1 Sx @TiO2 , Co1 Sx @TiO2 , Mo1 Sx @TiO2 , and Cu1 Sx @TiO2 SACs. Our study provides new hints for the design and biomimetic synthesis of highly efficient NRR electrocatalysts.

13.
Angew Chem Int Ed Engl ; 61(43): e202211307, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36037030

RESUMO

A sulfhydryl monomicelles interfacial assembly strategy is presented for the synthesis of fully exposed single-atom-layer Pt clusters on 2D mesoporous TiO2 (SAL-Pt@mTiO2 ) nanosheets. This synthesis features the introduction of the sulfhydryl group in monomicelles to finely realize the controllable co-assembly process of Pt precursors within ordered mesostructures. The resultant SAL-Pt@mTiO2 shows uniform SAL Pt clusters (≈1.2 nm) anchored in ultrathin 2D nanosheets (≈7 nm) with a high surface area (139 m2 g-1 ), a large pore size (≈25 nm) and a high dispersion (≈99 %). Moreover, this strategy is universal for the synthesis of other SAL metal clusters (Pd and Au) on 2D mTiO2 with high exposure and accessibility. When used as a catalyst for hydrogenation of 4-nitrostyrene, the SAL-Pt@mTiO2 shows a high catalytic activity (TOF up to 2424 h-1 ), 100 % selectivity for 4-aminostyrene, good stability, and anti-resistance to thiourea poisoning under relatively mild conditions (25 °C, 10 bar).

14.
Bull Environ Contam Toxicol ; 107(4): 577-584, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32166334

RESUMO

Plastics are ubiquitous in the environment and have become a hot topic in academic circles. Extensive studies have focused on analytical methods, source, abundance, transport, fate, degradation of plastics in the environment and threats to natural surroundings, wildlife or even human health. However, characteristics of plastic pollution, which are critical to understand this emerging problem, remain unknown up to now. Here, this paper reviews the major characteristics of plastic pollution in the environment to enhance present understanding of this issue. These characteristics, including diversity, persistence, global issues, combined pollution and threats to organisms and human health, are critically summarized in this work. Further, "plastic cycle" in the environment, namely, aquatic, atmospheric, and terrestrial system, is also discussed in this review. Finally, we highlight current challenges of plastic pollution posed to the public and also recommend the research trends in future work.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Poluição Ambiental , Humanos , Poluentes Químicos da Água/análise
15.
Angew Chem Int Ed Engl ; 58(44): 15863-15868, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31411807

RESUMO

A molecular design strategy is used to construct ordered mesoporous Ti3+ -doped Li4 Ti5 O12 nanocrystal frameworks (OM-Ti3+ -Li4 Ti5 O12 ) by the stoichiometric cationic coordination assembly process. Ti4+ /Li+ -citrate chelate is designed as a new molecular precursor, in which the citrate can not only stoichiometrically coordinate Ti4+ with Li+ homogeneously at the atomic scale, but also interact strongly with the PEO segments in the Pluronic F127. These features make the co-assembly and crystallization process more controllable, thus benefiting for the formation of the ordered mesostructures. The resultant OM-Ti3+ -Li4 Ti5 O12 shows excellent rate (143 mAh g-1 at 30 C) and cycling performances (<0.005 % fading per cycle). This work could open a facile avenue to constructing stoichiometric ordered mesoporous oxides or minerals with highly crystalline frameworks.

16.
J Am Chem Soc ; 140(21): 6531-6535, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29690767

RESUMO

Distinguishing structural isomers at the single-molecule level remains a challenge. We report the single-molecule recognition of two diketopyrrolopyrrole containing isomers (SDPP and SPPO) employing the mechanically controllable break junction technique. The single-molecule conductances of the two isomers are indistinguishable under normal conditions. However, reversible protonation and deprotonation of the SPPO in molecular junction result in more than 1 order of magnitude conductance change, which dramatically enhances the conductance difference between the two isomers. Theoretical study reveals that the dramatic conductance switching is due to reversible quantum interference effect. It is suggested that combination of stimuli-response and quantum interference can be an efficient strategy to enhance isomer recognition and conductance switching in single-molecule junctions.

17.
Zhonghua Yu Fang Yi Xue Za Zhi ; 49(6): 470-4, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26310328

RESUMO

OBJECTIVE: To compare the safety of haemophilus influenzae type b (Hib) vaccine vaccination on vastus lateralis muscle and deltoid muscle of infant. METHODS: A total of 408 3-4 months old infants were divided into vastus lateralis muscle group and deltoid muscle group in Beijing, 2014. They were divided into the vastus lateralis muscle group (204) and deltoid muscle group (204) by extracting random number. Each observation object was given 3 doses of Hib vaccine according to the program. Collected systemic and local reactions after vaccination and calculated the incidence of adverse reactions. RESULTS: A total of 61 infants were quitted during the study, 1 132 doses were observed. The total reactions incidence of Vastus lateralis muscle group and Deltoid muscle group were 33.0% (186/564) and 27.6% (157/568) with no statistical differences (χ² = 3.818, P = 0.059). The two groups incidence at the same day of vaccination (day 0) which the highest were 23.2% (131/564) and 20.6% (117/568), then declined with time (linear trend test vastus lateralis muscle group χ² = 36.600, P < 0.001,deltoid muscle group χ² = 29.947, P < 0.001), day 1 were 20.4% (115/564) and 17.6% (100/568), day 2 were 16.0% (90/564) and 13.4% (76/568), day 3 were 10.3% (58/564) and 10.6% (60/568), day 4-7 were 11.2% (63/564) and 11.3% (64/568). No serious adverse events (SAE) were reported during the study. The local reactions incidence of two groups were 7.1% (40/564) and 7.7% (44/568)with no statistical differences (χ² = 0.176, P = 0.675). The systemic reactions incidence of two groups were 25.9% (146/564) and 20.6% (117/568) with obvious statistical differences (χ² = 4.437, P = 0.035). The fever incidence of vastus lateralis muscle group (11.5% (65/564)) was higher than Deltoid muscle group (4.4% (25/568)) with obvious statistical differences (χ² = 4.868, P = 0.027). The 1st dose incidence of fever and abnormal crying of vastus lateralis muscle group (fever 11.3% (23/204), abnormal crying 19.1% (39/204)) was higher than deltoid muscle group (fever 4.4% (9/204), abnormal crying 11.8% (24/204)) and the 2nd dose of diarrhea of deltoid muscle group (11.6% (22/190)) was higher than vastus lateralis muscle group (5.9% (11/187)) with obvious statistical differences (fever χ² = 15.288, P < 0.001, abnormal crying χ² = 4.224, P = 0.040, diarrhea χ² = 3.829, P = 0.046). CONCLUSION: Both vastus lateralis muscle group and deltoid muscle group had lower incidence of adverse reactions after vaccination. No serious adverse events were associated with vaccination. Vastus lateralis muscle vaccination as well as deltoid muscle vaccination demonstrated safe.


Assuntos
Cápsulas Bacterianas , Músculo Deltoide , Vacinas Anti-Haemophilus , Músculo Quadríceps , China , Febre , Haemophilus influenzae tipo b , Humanos , Incidência , Lactente , Vacinação
18.
Mol Diagn Ther ; 28(4): 455-468, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837024

RESUMO

PURPOSE: Globally, non-small cell lung cancer (NSCLC) is the primary cause of cancer-related mortality, both early and accurate diagnosis are essential for effective treatment and improved patient outcomes. Exosomal noncoding RNAs (ncRNAs) have emerged as promising biomarkers for NSCLC diagnosis. This meta-analysis aims to assess the diagnostic accuracy of exosomal long noncoding RNAs (lncRNAs) for diagnosing NSCLC. METHODS: A comprehensive literature search was conducted to identify relevant studies that assessed the diagnostic performance of exosomal lncRNAs in NSCLC. Quality assessment and data extraction were performed independently by two reviewers. Pooled sensitivity, specificity, and other relevant diagnostic parameters were calculated using a bivariate random-effects model. Subgroup analyses and meta-regression were conducted to explore potential sources of heterogeneity. RESULTS: Sixteen studies, comprising 1843 NSCLC cases and 1298 controls, were included in this meta-analysis. The pooled sensitivity and specificity of nine exosomal lncRNAs for diagnosing NSCLC were 0.74 [95% confidence interval (CI) 0.69-0.79] and 0.78 (95% CI 0.68-0.85). The pooled area under the receiver operating characteristic curve (AUC) for fifteen lncRNAs was 0.80 (95% CI 0.768-0.831). Meta-regression could not find any source for interstudy heterogeneity. CONCLUSION: Exosomal lncRNAs, particularly AL139294.1, GAS5, LUCAT1, and SOX2-OT, have excellent diagnostic accuracy and promising diagnostic potential in NSCLC. Therefore, they can be used as diagnostic tools for early detection of NSCLC.


Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Exossomos/genética , Exossomos/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Curva ROC , Sensibilidade e Especificidade
19.
Small Methods ; : e2400069, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593363

RESUMO

Silicon (Si) is regarded as a promising anode material because of its outstanding theoretical capacity, abundant existence, and mature infrastructure, but it suffers from an inherent volume expansion problem. Herein, a facile, scalable, and cost-effective route to produce Si nanosheets (Si NSs) using a low-cost silica fume as the start materials is proposed. After coated with carbon, the as-prepared Si-NSs@C material delivers ultrahigh capability (2770 mAh g-1 at 0.1 C), high initial Coulombic efficiency (87.9%), and long cycling lifespan (100 cycles at 0.5 C with a capacity decay rate of 0.3% per cycle). Beyond proof of concept, this work demonstrates a Si-NSs based pouch cell with an impressive capacity retention of 70.9% after 400 cycles, making it more promising for practical application. Revealed by the theoretical simulation, kinetics analysis, and in situ thickness/pressure detection, it is found that the superior performance of Si-NSs is attributed to the improved diffusivity and reversibility of Li+ ions and low expansion.

20.
Adv Mater ; 36(44): e2409188, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39210633

RESUMO

Constructing nanoreactors with multiple active sites in well-defined crystalline mesoporous frameworks is an effective strategy for tailoring photocatalysts to address the challenging of CO2 reduction. Herein, one-dimensional (1-D) mesoporous single-crystal TiO2 nanorod (MS-TiO2-NRs, ≈110 nm in length, high surface area of 117 m2 g-1, and uniform mesopores of ≈7.0 nm) based nanoreactors are prepared via a droplet interface directed-assembly strategy under mild condition. By regulating the interfacial energy, the 1-D mesoporous single-crystal TiO2 can be further tuned to polycrystalline fan- and flower-like morphologies with different oxygen vacancies (Ov). The integration of single-crystal nature and mesopores with exposed oxygen vacancies make the rod-like TiO2 nanoreactors exhibit a high-photocatalytic CO2 reduction selectivity to CO (95.1%). Furthermore, photocatalytic cascade nanoreactors by in situ incorporation of CuW6O24 (W-Cu) clusters onto MS-TiO2-NRs via Ov are designed and synthesized, which improved the CO2 adsorption capacity and achieved two-step CO2-CO-CH4 photoreduction. The second step CO-to-CH4 reaction induced by W-Cu sites ensures a high generation rate of CH4 (420.4 µmol g-1 h-1), along with an enhanced CH4 selectivity (≈94.3% electron selectivity). This research provides a platform for the design of mesoporous single-crystal materials, which potentially extends to a range of functional ceramics and semiconductors for various applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa