RESUMO
Current literature emphasizes surgical complexities and customized resection for managing insular gliomas; however, radiogenomic investigations into prognostic radiomic traits remain limited. We aimed to develop and validate a radiomic model using multiparametric magnetic resonance imaging (MRI) for prognostic prediction and to reveal the underlying biological mechanisms. Radiomic features from preoperative MRI were utilized to develop and validate a radiomic risk signature (RRS) for insular gliomas, validated through paired MRI and RNA-seq data (N = 39), to identify core pathways underlying the RRS and individual prognostic radiomic features. An 18-feature-based RRS was established for overall survival (OS) prediction. Gene set enrichment analysis (GSEA) and weighted gene coexpression network analysis (WGCNA) were used to identify intersectional pathways. In total, 364 patients with insular gliomas (training set, N = 295; validation set, N = 69) were enrolled. RRS was significantly associated with insular glioma OS (log-rank p = 0.00058; HR = 3.595, 95% CI:1.636-7.898) in the validation set. The radiomic-pathological-clinical model (R-P-CM) displayed enhanced reliability and accuracy in prognostic prediction. The radiogenomic analysis revealed 322 intersectional pathways through GSEA and WGCNA fusion; 13 prognostic radiomic features were significantly correlated with these intersectional pathways. The RRS demonstrated independent predictive value for insular glioma prognosis compared with established clinical and pathological profiles. The biological basis for prognostic radiomic indicators includes immune, proliferative, migratory, metabolic, and cellular biological function-related pathways.
Assuntos
Produtos Biológicos , Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Reprodutibilidade dos Testes , Radiômica , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/metabolismo , PrognósticoRESUMO
OBJECTIVES: Seeking a noninvasive predictor for BRAF V600E mutation status of pleomorphic xanthoastrocytomas (PXAs) is essential for their prognoses and therapeutic use of BRAF inhibitors. We aimed to noninvasively diagnose BRAF V600E-mutated PXAs using MRI morphologic, DWI and clinical parameters. METHODS: The clinical findings, anatomical MRI characteristics, and diffusion parameters of 36 pathologically confirmed PXAs were retrospectively analyzed, and BRAF V600E-mutated (n = 16) and wild-type (n = 20) groups were compared. A binary logistic-regression analysis was performed, and a ROC curve was calculated to determine the independent predictors of BRAF V600E mutation status, diagnostic accuracy, and optimal cut-off value. RESULTS: A comparison of findings between groups showed that BRAF V600E-mutated PXAs were more frequent in children and young adults (≤ 35 years; P = 0.042) who often had histories of seizures (P = 0.004). Furthermore, BRAF V600E-mutated PXAs generally presented as solitary masses (P = 0.024), superficial locations with meningeal attachment (P < 0.001), predominantly cystic with mural nodules (P = 0.005), and had greater minimal ADC ratio (ADCratio) values of the tumor and peritumoral edema (P < 0.001). Binary logistic regression showed that age ≤ 35 years, solitary mass, superficial locations with meningeal attachment, and a greater minimal ADCratio of the tumor were independent predictors of BRAF V600E-mutated PXAs. The combination of all four independent predictors resulted in the highest sensitivity (100%) and specificity (90%), with AUC = 0.984. CONCLUSION: The BRAF V600E mutation status of PXAs could be noninvasively predicted using clinical and MRI characteristics. CRITICAL RELEVANCE STATEMENT: The noninvasive diagnostic criteria for BRAF V600E-mutated PXAs could offer guidance for the administration of BRAF V600E mutation inhibitors in the future.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Imagem de Difusão por Ressonância Magnética , Mutação , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Feminino , Masculino , Astrocitoma/genética , Astrocitoma/diagnóstico por imagem , Astrocitoma/patologia , Adulto , Imagem de Difusão por Ressonância Magnética/métodos , Criança , Adolescente , Estudos Retrospectivos , Adulto Jovem , Pessoa de Meia-Idade , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Pré-Escolar , Imageamento por Ressonância Magnética/métodos , Prognóstico , Curva ROCRESUMO
BACKGROUND: To identify reliable magnetic resonance imaging (MRI) features that can differentiate confluent fibrosis (CF) from infiltrative hepatocellular carcinoma (HCC). METHODS: A retrospective analysis was conducted on Twenty CF patients and 28 infiltrative HCC patients who underwent upper abdomen MRI scans. The imaging features of lesions were analyzed, and the apparent diffusion coefficient (ADC) of lesions were measured. Accuracy, sensitivity and specificity for the diagnosis of CF were calculated for each category individually and combined. RESULTS: Compared to infiltrative HCC, hepatic capsular retraction at the site of lesion, hepatic volume loss at the site of lesion and "nodular surround sign" were more common in patients with CF (all P < 0.001). Hepatic volume loss at the site of lesion, no or mild enhancement in arterial phase, and hyper-enhancing in delayed phase to the background parenchyma showed superior diagnostic accuracy (83.3%, 85.4%, 97.9%, respectively). When the lesion exhibited hepatic volume loss at the site of lesion or no or mild enhancement in arterial phase or hyper-enhancing in delayed phase, a sensitivity of 100.0% for the diagnosis of CF was achieved. When the lesion was positive for any two of three categories, or positive for all three categories, a specificity of 100.0% was achieved. The ADC values of CF were higher than those of infiltrative HCC (P < 0.001). CONCLUSION: The combination of the hepatic volume loss at the site of lesion, no or mild enhancement in arterial phase, and hyper-enhancing in delayed phase to the background parenchyma can be considered reliable MR features for the diagnosis of CF, as they allow differentiation from infiltrative HCC.
Assuntos
Carcinoma Hepatocelular , Cirrose Hepática , Neoplasias Hepáticas , Imageamento por Ressonância Magnética , Sensibilidade e Especificidade , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Masculino , Feminino , Estudos Retrospectivos , Diagnóstico Diferencial , Pessoa de Meia-Idade , Cirrose Hepática/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Meios de ContrasteRESUMO
Because of the multi-pathway antibacterial mechanisms of nanomaterials, they have received widespread attention in wound therapy. However, owing to the complexities of bacterial responses toward nanomaterials, antibacterial molecular mechanisms remain unclear, making it difficult to rationally design highly efficient antibacterial nanomaterials. Fortunately, molecular dynamics simulations and omics techniques have been used as effective methods to further investigate the action targets of nanomaterials. Therefore, the review comprehensively analyzes the antibacterial mechanisms of nanomaterials from the morphology-dependent antibacterial activity and physicochemical/optical properties-dependent antibacterial activity, which provided guidance for constructing excellently efficient and broad-spectrum antibacterial nanomaterials for wound therapy. More importantly, the main molecular action targets of nanomaterials from the membranes, DNA, energy metabolism pathways, oxidative stress defense systems, ribosomes, and biofilms are elaborated in detail. Furthermore, nanomaterials used in wound therapy are reviewed and discussed. Finally, future directions of nanomaterials from mechanisms to nanomedicine are further proposed.
RESUMO
Background: Natural bioactive substances have been widely studied for their superior anti-tumor activity and low toxicity. However, natural bioactive substances suffer from poor water-solubility and poor stability in the physiological environment. Therefore, to overcome the drawbacks of natural bioactive substances in tumor therapy, there is an urgent need for an ideal nanocarrier to achieve high bioactive substance loading with low toxicity. Materials and Methods: Face-centered cubic hollow mesoporous Prussian Blue (HMPB) NPs were prepared by stepwise hydrothermal method. Among them, PVP served as a protective agent and HCl served as an etching agent. Firstly, MPB NPs were obtained by 0.01 M HCl etching. Then, the highly uniform dispersed HMPB NPs were obtained by further etching with 1 M HCl. Results: In this work, we report a pH-responsive therapeutic nanoplatform based on HMPB NPs. Surprisingly, as-prepared HMPB NPs with ultra-high bioactive substances loading capacity of 329 µg mg-1 owing to the large surface area (131.67 m2 g-1) and wide internal pore size distribution (1.8-96.2 nm). Moreover, with the outstanding photothermal conversion efficiency of HMPB NPs (30.13%), natural bioactive substances were released in the tumor microenvironment (TME). HMPB@PC B2 achieved excellent synergistic therapeutic effects of photothermal therapy (PTT) and chemotherapy (CT) in vivo and in vitro without causing any extraneous side effects. Conclusion: A biocompatible HMPB@PC B2 nanoplatform was constructed by simple physical adsorption. The in vitro and in vivo experiment results demonstrated that the synergy of PTT/CT provided excellent therapeutic efficiency for cervical cancer without toxicity. Altogether, as-designed nanomedicines based on natural bioactive substances may be provide a promising strategy for cancer therapy.