Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 120(20): 4557-4574, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34478698

RESUMO

Amphiphilic ß-peptides, which are synthetically designed short-chain helical foldamers of ß-amino acids, are established potent biomimetic alternatives of natural antimicrobial peptides. An intriguing question is how the distinct molecular architecture of these short-chain and rigid synthetic peptides translates to its potent membrane-disruption ability. Here, we address this question via a combination of all-atom and coarse-grained molecular dynamics simulations of the interaction of mixed phospholipid bilayer with an antimicrobial 10-residue globally amphiphilic helical ß-peptide at a wide range of concentrations. The simulation demonstrates that multiple copies of this synthetic peptide, initially placed in aqueous solution, readily self-assemble and adsorb at membrane interface. Subsequently, beyond a threshold peptide/lipid ratio, the surface-adsorbed oligomeric aggregate moves inside the membrane and spontaneously forms stable water-filled transmembrane pores via a cooperative mechanism. The defects induced by these pores lead to the dislocation of interfacial lipid headgroups, membrane thinning, and substantial water leakage inside the hydrophobic core of the membrane. A molecular analysis reveals that despite having a short architecture, these synthetic peptides, once inside the membrane, would stretch themselves toward the distal leaflet in favor of potential contact with polar headgroups and interfacial water layer. The pore formed in coarse-grained simulation was found to be resilient upon structural refinement. Interestingly, the pore-inducing ability was found to be elusive in a non-globally amphiphilic sequence isomer of the same ß-peptide, indicating strong sequence dependence. Taken together, this work puts forward key perspectives of membrane activity of minimally designed synthetic biomimetic oligomers relative to the natural antimicrobial peptides.


Assuntos
Bicamadas Lipídicas , Peptídeos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Água
2.
PLoS Comput Biol ; 15(1): e1006665, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645590

RESUMO

Binding of small molecules to proteins often involves large conformational changes in the latter, which open up pathways to the binding site. Observing and pinpointing these rare events in large scale, all-atom, computations of specific protein-ligand complexes, is expensive and to a great extent serendipitous. Further, relevant collective variables which characterise specific binding or un-binding scenarios are still difficult to identify despite the large body of work on the subject. Here, we show that possible primary and secondary binding pathways can be discovered from short simulations of the apo-protein without waiting for an actual binding event to occur. We use a projection formalism, introduced earlier to study deformation in solids, to analyse local atomic displacements into two mutually orthogonal subspaces-those which are "affine" i.e. expressible as a homogeneous deformation of the native structure, and those which are not. The susceptibility to non-affine displacements among the various residues in the apo- protein is then shown to correlate with typical binding pathways and sites crucial for allosteric modifications. We validate our observation with all-atom computations of three proteins, T4-Lysozyme, Src kinase and Cytochrome P450.


Assuntos
Proteínas/química , Proteínas/metabolismo , Animais , Biologia Computacional/métodos , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
3.
Neuron ; 111(24): 4006-4023.e10, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38128479

RESUMO

Phosphorylation of α-synuclein at the serine-129 site (α-syn Ser129P) is an established pathologic hallmark of synucleinopathies and a therapeutic target. In physiologic states, only a fraction of α-syn is phosphorylated at this site, and most studies have focused on the pathologic roles of this post-translational modification. We found that unlike wild-type (WT) α-syn, which is widely expressed throughout the brain, the overall pattern of α-syn Ser129P is restricted, suggesting intrinsic regulation. Surprisingly, preventing Ser129P blocked activity-dependent synaptic attenuation by α-syn-thought to reflect its normal function. Exploring mechanisms, we found that neuronal activity augments Ser129P, which is a trigger for protein-protein interactions that are necessary for mediating α-syn function at the synapse. AlphaFold2-driven modeling and membrane-binding simulations suggest a scenario where Ser129P induces conformational changes that facilitate interactions with binding partners. Our experiments offer a new conceptual platform for investigating the role of Ser129 in synucleinopathies, with implications for drug development.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína/metabolismo , Fosforilação , Doença de Parkinson/metabolismo , Serina/metabolismo
4.
J Phys Chem B ; 125(20): 5285-5295, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33979165

RESUMO

Apolipoprotein E (apoE), a major determinant protein for lipid metabolism, actively participates in lipid transport in the central nervous system via high-affinity interaction with the low-density lipoprotein receptor (LDLR). Prior evidences indicate that the phospholipids first need to assemble around apoE before the protein can recognize its receptor. However, despite multiple attempts via spectroscopic and biochemical investigations, it is unclear what are the impacts of lipid assembly on the globular structure of apoE. Here, using a combination of all-atom and coarse-grained molecular dynamics simulations, we demonstrate that an otherwise compact tertiary fold of monomeric apoE3 spontaneously unwraps in an aqueous phospholipid solution in two distinct stages. Interestingly, these structural reorganizations are triggered by an initial localized binding of lipid molecules to the C-terminal domain of the protein, which induce a rapid separation of the C-terminal domain of apoE3 from the rest of its tertiary fold. This is followed by a slow lipid-induced interhelix separation event within the N-terminal domain of the protein, as seen in an extensively long coarse-grained simulation. Remarkably, the resultant complex takes the shape of an "open conformation" of the lipid-stabilized unwrapped protein, which intriguingly coincides with an earlier proposal by a small-angle X-ray scattering (SAXS) experiment. The lipid-binding activity and the lipid-induced protein conformation are found to be robust across a monomeric mutant and wild-type sequence of apoE3. The "open" complex derived in coarse-grained simulation retains its structural morphology after reverse-mapping to the all-atom representation. Collectively, the investigation puts forward a plausible structure of currently elusive conformationally activated state of apoE3, which is primed for recognition by the lipoprotein receptor and can be exploited for eventual lipid transport.


Assuntos
Apolipoproteínas E , Fosfolipídeos , Apolipoproteína E3/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Ligação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
J Phys Chem Lett ; 12(6): 1644-1656, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33555894

RESUMO

Intrinsically disordered proteins (IDPs) populate an ensemble of dynamic conformations, making their structural characterization by experiments challenging. Many IDPs undergo liquid-liquid phase separation into dense membraneless organelles with myriad cellular functions. Multivalent interactions in low-complexity IDPs promote the formation of these subcellular coacervates. While solution NMR, Förster resonance energy transfer (FRET), and small-angle X-ray scattering (SAXS) studies on IDPs have their own challenges, recent computational methods draw a rational trade-off to characterize the driving forces underlying phase separation. In this Perspective, we critically evaluate the scope of approximation-free field theoretic simulations, well-tempered ensemble methods, enhanced sampling techniques, coarse-grained force fields, and slab simulation approaches to offer an improved understanding of phase separation. A synergy between simulation length scale and model resolution would reduce the existing caveats and enable theories of polymer physics to elucidate finer details of liquid-liquid phase separation (LLPS). These computational advances offer promise for rigorous characterization of the IDP proteome and designing peptides with tunable material and self-assembly properties.


Assuntos
Proteínas Intrinsicamente Desordenadas/isolamento & purificação , Extração Líquido-Líquido/métodos , Simulação por Computador , Transferência Ressonante de Energia de Fluorescência , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
J Chem Theory Comput ; 16(4): 2508-2516, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32207977

RESUMO

Identifying subtle conformational fluctuations underlying the dynamics of biomacromolecules is crucial for resolving their free energy landscape. We show that a collective variable, originally proposed for crystalline solids, is able to filter out essential macromolecular motions more efficiently than other approaches. While homogeneous or "affine" deformations of the biopolymer are trivial, biopolymer conformations are complicated by the occurrence of inhomogeneous or "nonaffine" displacements of atoms relative to their positions in the native structure. We show that these displacements encode functionally relevant conformations of macromolecules, and in combination with a formalism based upon time-structured independent component analysis, they quantitatively resolve the free energy landscape of a number of macromolecules of hierarchical complexity. The kinetics of conformational transitions among the basins can now be mapped within the framework of a Markov state model. The nonaffine modes, obtained by projecting out homogeneous fluctuations from the local displacements, are found to be responsible for local structural changes required for transitioning between pairs of macrostates.


Assuntos
Conformação Proteica , Simulação por Computador , Cadeias de Markov , Modelos Moleculares , Proteínas/química
7.
J Phys Chem B ; 123(49): 10384-10393, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31738854

RESUMO

Despite the increasing health risk from infantile cataracts, identifying the mechanism of this disease remains a challenge due to a lack of structural investigations using experimental and computational approaches. Mutations in human γS-crystallin are contingent with childhood cataracts. Our recent high-resolution structural studies using solution NMR spectroscopy established the key role of the G57W mutation in human γS-crystallin (abbreviated hereafter as γS-G57W), promoting structural instability. In order to design therapeutics to delay or upset congenital cataracts, the characterization of the precursors to γS-G57W aggregation is indispensable. In this endeavor, we present microsecond long unbiased atomistic molecular dynamics simulations and principal component analyses that unfold insights into lens crystallin aggregation. An enhanced sampling metadynamics approach was further employed to systematically unravel the molecular dynamics underlying crucial interdomain contacts. Taken together, our experiment-guided computational study in this paper led to the identification of domain-swapped intermediates in γS-G57W to atomic resolution with insights into the aggregation of lens crystallins causing childhood cataracts for the first time with functional consequences.


Assuntos
Simulação de Dinâmica Molecular , gama-Cristalinas/química , Humanos , Ressonância Magnética Nuclear Biomolecular , Agregados Proteicos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa