Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Genet ; 64(3): 661-675, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29167986

RESUMO

Bacterial cell division is a complex process brought about by the coordinated action of multiple proteins. Separation of daughter cells during the final stages of division involves cleavage of new cell wall laid down at the division septum. In E. coli, this process is governed by the action of N-acetylmuramoyl-L-alanine amidases AmiA/B/C, which are regulated by their LytM activators EnvC and NlpD. While much is known about the regulation of septum cleavage in E. coli, the mechanism of daughter cell separation is not clear in Caulobacter crescentus, a dimorphic crescent-shaped bacterium. In this work, we characterized the role of AmiC, the only annotated amidase in C. crescentus. AmiC from C. crescentus is functional in E. coli and restores cell separation defects seen in E. coli amidase mutants, suggesting that AmiC has septum splitting activity. The medial localization of AmiC was independent of DipM, an LytM domain-containing endopeptidase. Our results indicate that enzymatic activity is essential for medial recruitment of AmiC. Overexpression of AmiC causes cell separation defects and formation of chains. Finally, overexpression of AmiC in cells inhibited for cell division leads to lysis. Collectively, our findings reveal that regulation of daughter cell separation in C. crescentus differs from that of E. coli and can serve as a model system to study bacterial cytokinesis.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/enzimologia , Amidoidrolases/genética , Proteínas de Bactérias/genética , Catálise , Caulobacter crescentus/citologia , Divisão Celular , Parede Celular/enzimologia , Escherichia coli/genética , Fluorescência , Hidrólise , Microscopia Eletrônica de Varredura , Mutação , Peptidoglicano/metabolismo
2.
Carbohydr Polym ; 254: 117296, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357864

RESUMO

A fully biobased benzoxazine monomer, V-fa (using vanillin and furfurylamine) was grafted onto chitosan (CS) at different weight ratios (CXVY) using "grafting to" benign Schiff base chemistry. Incorporation of V-fa onto CS increased the tensile strength and improved chemical resistance of the CS-graft-V-fa films. Reversible labile linkages, expansion of CS galleries and leaching out of phenolic species from biobased polymer films led to an improved antibacterial activity against Staphylococcus aureus, which is ∼125 times higher than the bare CS film, V-fa and oligomeric V-fa. The leached out species from films were analyzed extensively by NMR, FTIR, GPC, ABTS and HRMS analysis. Oxidative-stress seems to be responsible for antibacterial activity. Current work illustrates an attractive synthetic approach and the improved antibacterial performance of biobased CS-graft-poly(V-fa) films which may hold as a potential alternative for wound-healing and implant applications in future.


Assuntos
Antibacterianos/química , Antioxidantes/química , Benzoxazinas/química , Quitosana/química , Liberação Controlada de Fármacos , Staphylococcus aureus/efeitos dos fármacos , Benzaldeídos/química , Furanos/química , Interações Hidrofóbicas e Hidrofílicas , Viabilidade Microbiana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Solventes/química , Staphylococcus aureus/metabolismo , Resistência à Tração , Transplante/métodos , Água/química , Cicatrização/efeitos dos fármacos
3.
ACS Omega ; 2(7): 3070-3082, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023683

RESUMO

Graphene oxide (GO) is a promising and remarkable nanomaterial that exhibits antimicrobial activity due to its specific surface-interface interactions. In the present work, for the first time, we have reported the antibacterial activity of GO-coated surfaces prepared by two different methods (Hummers' and improved, i.e., GOH and GOI) against bacterial biofilm formation. The bacterial toxicity of the deposited GO-coated surfaces was investigated for both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) models of bacteria. The mechanism of inhibition is different on the coated surface than that in suspension, as determined by measurement of the percentage inhibition of biofilm formation, Ellman's assay, and colony forming unit (CFU) studies. The difference in the nature, degree of oxidative functionalities, and size of the synthesized GO nanoparticles mitigates biofilm formation. To better understand the antimicrobial mechanism of GO when coated on surfaces, we were able to demonstrate that beside reactive oxygen species-mediated oxidative stress, the physical properties of the GO-coated substrate effectively inactivate bacterial cell proliferation, which forms biofilms. Light and atomic force microscopy (AFM) images display a higher inhibition in the proliferation of planktonic cells in Gram-negative bacteria as compared to that in Gram-positive bacteria. The existence of a smooth surface with fewer porous domains in GOI inhibits biofilm formation, as demonstrated by optical microscopy and AFM images. The oxidative stress was found to be lower in the coated surface as compared to that in the suspensions as the latter enables exposure of both a large fraction of the active edges and functionalities of the GO sheets. In suspension, GOH is selective against S. aureus whereas GOI showed inhibition toward E. coli. This study provides new insights to better understand the bactericidal activity of GO-coated surfaces and contributes to the design of graphene-based antimicrobial surface coatings, which will be valuable in biomedical applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa