Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Photochem Photobiol Sci ; 22(7): 1543-1559, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36826694

RESUMO

The Eclipta alba plant is considered hepatoprotective, owing to its phytoconstituents wedelolactone. In the current study, effect of elevated ultraviolet-B (eUV-B) radiation was investigated on biochemical, phytochemical, and antioxidative enzymatic activities of E. alba (Bhringraj) plant. The UV-B exposure resulted in an increase in oxidative stress, which has caused an imbalance in phytochemical, biochemical constituents, and induced antioxidative enzymatic activities. It was observed that the UV-B exposure promoted wedelolactone yield by 23.64%. Further, the leaf extract of UV-B-exposed plants was used for the synthesis of carbon quantum dots (CQDs) using low cost, one-step hydrothermal technique and its biocompatibility was studied using in vitro MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay on HepG2 liver cell line. It revealed no toxicity in any treatment groups in comparison to the control. Both CQDs and leaf extract were orally administered to the golden hamster suffering from alcohol-induced liver cirrhosis. In the morphometric study, it was clearly observed that a combination of UV-B-exposed leaf extract and synthesized CQDs delivered the best result with maximum recovery of liver tissues. The present study reveals the positive impact of UV-B exposure on the medicinally important plant, increased yield of wedelolactone, and its enhanced hepatoprotective efficacy for the treatment of damaged liver tissues.


Assuntos
Eclipta , Pontos Quânticos , Animais , Cricetinae , Extratos Vegetais/farmacologia , Mesocricetus , Antioxidantes/farmacologia , Cirrose Hepática , Carbono/farmacologia
2.
Nanotechnology ; 31(26): 265102, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32150736

RESUMO

Fluorescent atacamite nanoclusters (FANCs) have been developed and modified with silica for Drosophila salivary gland tissue imaging and photothermally induced cell death of osteosarcoma MG-63 cells. FANCs were synthesized with Moringa oleifera leaf extract without using any hazardous reducing and external capping agents. FANC was further used to evaluate light absorption, fluorescence emission, band gap, and magnetic properties as the first report on such nanoclusters. Upon excitation with a 350 nm light source, FANCs exhibited fluorescence at 460 nm, with a relative quantum yield of 0.3%. Besides, silica-encapsulated fluorescent atacamite nanoclusters (SEFANC) manifested remarkable improvement in emission, quantum yield (1.7%), shelf-life (15 d), biocompatibility, and photostability. Concomitantly, it has also increased the absorption in the near-infrared region and demonstrated high heat generation potential (42 °C → 50 °C). The above results suggest that FANC can be a potential candidate in the area of nanomedicine for a number of applications such as bioimaging, photothermal therapy, etc.

3.
J Mater Sci Mater Med ; 26(2): 103, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25655497

RESUMO

One of the existing issues in implant failure of orthopedic biomaterials is the toxicity induced by the fine particles released during long term use in vivo, leading to acute inflammatory response. In developing a new class of piezobiocomposite to mimic the integrated electrical and mechanical properties of bone, bone-mimicking physical properties as well as in vitro cytocompatibility properties have been achieved with spark plasma sintered hydroxyapatite (HA)-barium titanate (BaTiO3) composites. However, the presence of BaTiO3 remains a concern towards the potential toxicity effect. To address this issue, present work reports the first result to conclusively confirm the non-toxic effect of HA-BaTiO3 piezobiocomposite nanoparticulates, in vivo. Twenty BALB/c mice were intra-articularly injected at their right knee joints with different concentrations of HA-BaTiO3 composite of up to 25 mg/ml. The histopathological examination confirmed the absence of any trace of injected particles or any sign of inflammatory reaction in the vital organs, such as heart, spleen, kidney and liver at 7 days post-exposure period. Rather, the injected nanoparticulates were found to be agglomerated in the vicinity of the knee joint, surrounded by macrophages. Importantly, the absence of any systemic toxicity response in any of the vital organs in the treated mouse model, other than a mild local response at the site of delivery, was recorded. The serum biochemical analyses using proinflammatory cytokines (TNF-α and IL-1ß) also complimented to the non-immunogenic response to injected particulates. Altogether, the absence of any inflammatory/adverse reaction will open up myriad of opportunities for BaTiO3 based piezoelectric implantable devices in biomedical applications.


Assuntos
Compostos de Bário/química , Compostos de Bário/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Titânio/química , Titânio/toxicidade , Animais , Citocinas/imunologia , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos , Soluções , Solventes/química , Síndrome de Resposta Inflamatória Sistêmica/patologia , Distribuição Tecidual
4.
J Mater Chem B ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958687

RESUMO

In a number of recently published experimental studies from our research group, the positive impact of magnetic stimuli (static/pulsed) on cell functionality modulation or bactericidal effects, in vitro, has been established. In order to develop a theoretical understanding of such magnetobiological effects, the present study aimed to present two quantitative models to determine magnetic Maxwell stresses as well as pressure acting on the cell membrane, under the influence of a time varying magnetic field. The model predicts that magnetic field-induced stress on the cell/bacteria is dependent on the conductivity properties of the extracellular region, which is determined to be too low to cause any significant effect. However, the force on the cell/bacteria due to the induced electric field is more influential than that of the magnetic field, which has been used to determine the membrane tension that can cause membrane poration. With a known critical membrane tension for cells, the field parameters necessary to cause membrane rupture have been estimated. Based on the experimental results and theoretically predicted values, the field parameters can be classified into three regimes, wherein the magnetic fields cause no effect or result in biophysical stimulation or induce cell death due to membrane damage. Taken together, this work provides some quantitative insights into the impact of magnetic fields on biological systems.

5.
J Biomed Mater Res B Appl Biomater ; 112(1): e35352, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982372

RESUMO

The development of patient-specific bone scaffolds that can expedite bone regeneration has been gaining increased attention, especially for critical-sized bone defects or fractures. Precise adaptation of the scaffold to the region of implantation and reduced surgery times are also crucial at clinical scales. To this end, bioactive fluorcanasite glass-ceramic microparticulates were incorporated within a biocompatible photocurable resin matrix following which the biocomposite resin precursor was 3D-printed with digital light processing method to develop the bone scaffold. The printing parameters were optimized based on spot curing investigation, particle size data, and UV-visible spectrophotometry. In vitro cell culture with MG-63 osteosarcoma cell lines and pH study within simulated body fluid demonstrated a noncytotoxic response of the scaffold samples. Further, the in vivo bone regeneration ability of the 3D-printed biocomposite bone scaffolds was investigated by implantation of the scaffold samples in the rabbit femur bone defect model. Enhanced angiogenesis, osteoblastic, and osteoclastic activities were observed at the bone-scaffold interface, while examining through fluorochrome labelling, histology, radiography, field emission scanning electron microscopy, and x-ray microcomputed tomography. Overall, the results demonstrated that the 3D-printed biocomposite bone scaffolds have promising potential for bone loss rehabilitation.


Assuntos
Osso e Ossos , Vidro , Alicerces Teciduais , Animais , Humanos , Coelhos , Microtomografia por Raio-X , Regeneração Óssea , Impressão Tridimensional , Osteogênese , Engenharia Tecidual
6.
Biomater Adv ; 157: 213729, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101068

RESUMO

Bioactive glasses have recently been attracted to meet the challenge in bone tissue regeneration, repair, healing, dental implants, etc. Among the conventional bio-glasses, a novel quaternary mesoporous nano bio-glass with composition 81S(81SiO2-(16-x)CaO-2P2O5-1Na2O-xMgO) (x = 0, 1.6, 2.4, 4 and 8 mol%) employing Stober's method has been explored for examining the above potential application through in-vitro SBF assay, MTT assay, antimicrobial activity and drug loading and release ability. With increasing the MgO concentration up to 4 mol%, from in-vitro SBF assay, we observe that HAp layer develops on the surface of the nBGs confirmed from XRD, FTIR and FESEM. MTT assay using MG-63 cells confirms the biocompatibility of the nBGs having cell viability >225 % for MGO_4 after 72 h which is more than the clinically used 45S5 bio-glass. We have observed cell viability of >125 % even after 168 h. Moreover, MGO_4 is found to restrict the growth of E. coli by 65 % while S. aureus by 75 %, confirming the antimicrobial activity. Despite an increase in the concentration of magnesium, nBGs are found to be non-toxic towards the RBCs up to 4 mol% of MgO while for 8 %, the hemolysis percentage is >6 % which is toxic. Being confirmed MGO_4 nBG as a bioactive material, various concentrations of drug (Dexamethasone (DEX)) loading and release kinetics are examined. We show that 80 % of loading in case of 10 mg-ml-1 and 70 % of cumulative release in 100 h. The mesoporous structure of MGO_4 having an average pore diameter of 5 nm and surface area of 216 m2 g-1 confirmed from BET supports the loading and release kinetics. We conclude that the quaternary MGO_4 nBG may be employed effectively for bone tissue regeneration due to its high biocompatibility, excellent in-vitro cell viability, antimicrobial response and protracted drug release.


Assuntos
Anti-Infecciosos , Óxido de Magnésio , Óxido de Magnésio/farmacologia , Óxido de Magnésio/química , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Vidro/química
7.
J Mater Sci Mater Med ; 24(7): 1789-98, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23529292

RESUMO

This article reports the intermittent pulse electric field stimulus mediated in vitro cellular response of L929 mouse fibroblast/SaOS2 osteoblast-like cells on austenitic steel substrates in reference to the field strength dependent behavior. The cellular density and morphometric analyses revealed that the optimal electric (E) fields for the maximum cell density of adhered L929 (~270 % to that of untreated sample) and SaOS2 (~280 % to that of untreated sample) cells are 1 V (0.33 V/cm) and 2 V (0.67 V/cm), respectively. The trend in aspect ratio of elongated SaOS2 cells did not indicate any significant difference among the untreated and treated (up to 3.33 V/cm) cells. The average cell and nucleus areas (for SaOS2 cells) were increased with an increase in the applied voltage up to 8 V (2.67 V/cm) and reduced thereafter. However, the ratio of nucleus to total cell area was increased significantly on the application of higher voltages (2-10 V), indicating the possible influence of E-field on cell growth. Further, the cell density results were compared with earlier results obtained with sintered Hydroxyapatite (HA) and HA-BaTiO3 composites and such comparison revealed that the enhanced cell density on steel sample occurs upon application of much lower field strength and stimulation time. This indicates the possible role of substrate conductivity towards cell growth in pulsed E-field mediated culture conditions.


Assuntos
Fibroblastos/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Aço Inoxidável/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Condutividade Elétrica , Estimulação Elétrica/métodos , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Camundongos , Microscopia de Fluorescência , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Aço Inoxidável/química , Propriedades de Superfície , Alicerces Teciduais/química
8.
ACS Biomater Sci Eng ; 9(11): 6293-6308, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37877692

RESUMO

MgSiO3-based biodegradable ceramics demonstrated remarkable potential for treating small-scale bone defects and temporary bone replacement. In addition, the dissolution behavior of MgSiO3 bioceramics can be tuned by doping of Ca and Zr elements at Mg and Si sites, respectively. The present study reported the influence of formation of Ca- and Zr-codoped Mg1-xCaxSi1-xZrxO3 (x = 0, 0.1, 0.2, 0.3, and 0.4) bioelectrets and electrodynamic stimulation toward improving their osteogenic response. Mg1-xCaxSi1-xZrxO3 electrets were successfully synthesized by a solid-state route. A detailed X-ray photoelectron spectroscopy (XPS) analyses revealed that the electrets produced oxygen-deficient active sites. The formation of Mg1-xCaxSi1-xZrxO3 electrets significantly increased the surface hydrophilicity. Inductively coupled plasma (ICP) analyses were used to examine the leaching behavior of Ca/Zr-codoped MgSiO3 bioceramics. In vitro cell culture analyses indicated that the osteogenesis of MG-63 cells was remarkably enhanced on the electrodynamic field-treated Mg1-xCaxSi1-xZrxO3 bioelectrets as compared to hydroxyapatite (HA). Moreover, a better osteogenic response was observed for higher concentrations of Ca (0.3 and 0.4) and Zr (0.3 and 0.4) doping in the MgSiO3 bioelectrets. Further, the mechanism of enhanced cellular functionality was revealed by the measurement of intracellular Ca2+.


Assuntos
Durapatita , Osteogênese , Durapatita/farmacologia , Durapatita/química , Osso e Ossos
9.
Acta Biomater ; 171: 85-113, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37673230

RESUMO

One of the recent innovations in the field of personalized healthcare is the piezoelectric nanogenerators (PENGs) for various clinical applications, including self-powered sensors, drug delivery, tissue regeneration etc. Such innovations are perceived to potentially address some of the unmet clinical needs, e.g., limited life-span of implantable biomedical devices (e.g., pacemaker) and replacement related complications. To this end, the generation of green energy from biomechanical sources for wearable and implantable bioelectronic devices gained considerable attention in the scientific community. In this perspective, this article provides a comprehensive state-of-the-art review on the recent developments in the processing, applications and associated concerns of piezoelectric materials (synthetic/biological) for personalized healthcare applications. In particular, this review briefly discusses the concepts of piezoelectric energy harvesting, piezoelectric materials (ceramics, polymers, nature-inspired), and the various applications of piezoelectric nanogenerators, such as, self-powered sensors, self-powered pacemakers, deep brain stimulators etc. Important distinction has been made in terms of the potential clinical applications of PENGs, either as wearable or implantable bioelectronic devices. While discussing the potential applications as implantable devices, the biocompatibility of the several hybrid devices using large animal models is summarized. This review closes with the futuristic vision of integrating data science approaches in developmental pipeline of PENGs as well as clinical translation of the next generation PENGs. STATEMENT OF SIGNIFICANCE: Piezoelectric nanogenerators (PENGs) hold great promise for transforming personalized healthcare through self-powered sensors, drug delivery systems, and tissue regeneration. The limited battery life of implantable devices like pacemakers presents a significant challenge, leading to complications from repititive surgeries. To address such a critical issue, researchers are focusing on generating green energy from biomechanical sources to power wearable and implantable bioelectronic devices. This comprehensive review critically examines the latest advancements in synthetic and nature-inspired piezoelectric materials for PENGs in personalized healthcare. Moreover, it discusses the potential of piezoelectric materials and data science approaches to enhance the efficiency and reliability of personalized healthcare devices for clinical applications.


Assuntos
Próteses e Implantes , Dispositivos Eletrônicos Vestíveis , Animais , Reprodutibilidade dos Testes , Cerâmica , Sistemas de Liberação de Medicamentos
10.
Multimed Tools Appl ; : 1-15, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37362741

RESUMO

Increased use of ultra-wideband (UWB) in biomedical applications based on wireless body area networks (WBAN) opens a variety of options in the field of biomedical research. WBAN may aid in the continuous health monitoring of patients while they go about their everyday lives. Many studies and researchers were conducted several experimentations in the same field for the performance improvement. This study covered the hybridization of UWB technology, as well as on-body, off-body, and human-body ultra-wideband communication (HB-UWB). In this paper, the parameters considered are throughput, energy consumption, energy efficiency, energy used, network survival and delay. An improved model for design and assessment of power-saving UWB-WBAN was developed in this paper. A novel protocol model was introduced in this paper, namely low-power traffic-aware emergency based narrowband protocol (LTE-NBP) to overcome the major drawbacks of emergency, critical data transmission, reliability and the power issues in UWB-WBAN. It's the emergency-based low-power traffic-aware narrowband protocol. It is based on the dual-band physical layer technology. The suggested protocol considered an aware traffic model and an emergency medium access control (MAC) protocol. The proposed model's performance was evaluated and compared with the related algorithms on different performance parameters. The improved model is found to be efficient in throughput, energy efficiency, energy consumption, and delay.

11.
Environ Sci Pollut Res Int ; 30(17): 48654-48675, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36849690

RESUMO

The electronic and electrical industrial sector is exponentially growing throughout the globe, and sometimes, these wastes are being disposed of and discarded with a faster rate in comparison to the past era due to technology advancements. As the application of electronic devices is increasing due to the digitalization of the world (IT sector, medical, domestic, etc.), a heap of discarded e-waste is also being generated. Per-capita e-waste generation is very high in developed countries as compared to developing countries. Expansion of the global population and advancement of technologies are mainly responsible to increase the e-waste volume in our surroundings. E-waste is responsible for environmental threats as it may contain dangerous and toxic substances like metals which may have harmful effects on the biodiversity and environment. Furthermore, the life span and types of e-waste determine their harmful effects on nature, and unscientific practices of their disposal may elevate the level of threats as observed in most developing countries like India, Nigeria, Pakistan, and China. In the present review paper, many possible approaches have been discussed for effective e-waste management, such as recycling, recovery of precious metals, adopting the concepts of circular economy, formulating relevant policies, and use of advance computational techniques. On the other hand, it may also provide potential secondary resources valuable/critical materials whose primary sources are at significant supply risk. Furthermore, the use of machine learning approaches can also be useful in the monitoring and treatment/processing of e-wastes. HIGHLIGHTS: In 2019, ~ 53.6 million tons of e-wastes generated worldwide. Discarded e-wastes may be hazardous in nature due to presence of heavy metal compositions. Precious metals like gold, silver, and copper can also be procured from e-wastes. Advance tools like artificial intelligence/machine learning can be useful in the management of e-wastes.


Assuntos
Resíduo Eletrônico , Metais Pesados , Gerenciamento de Resíduos , Resíduo Eletrônico/análise , Inteligência Artificial , Gerenciamento de Resíduos/métodos , Eletrônica , Reciclagem/métodos
12.
Biomater Adv ; 140: 213080, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35985067

RESUMO

One of the recent challenges in the design/development of prosthetic orthopedic implants is to address the concern of local/systemic toxicity of debris particles, released due to wear or degradation. Such debris particles often lead to inflammation at the implanted site or aseptic loosening of the prosthesis which results in failure of the implant during long run. Several in vitro studies demonstrated the potentiality of piezoelectric sodium potassium niobate [NaxK1-xNbO3 (x = 0.2, 0.5, 0.8), NKN] as an emerging next-generation polarizable orthopedic implant. In this perspective, we performed an in vivo study to examine the local and systemic toxicity of NKN nanoparticulates, as a first report. In the present study, male Wistar rats were intra-articularly injected to the knee joint with 100 µl of NKN nanoparticulates (25 mg/ml in normal saline). After 7 days of exposure, the histopathological analyses demonstrate the absence of any inflammation or dissemination of nanoparticulates in vital organs such as heart, liver, kidney and spleen. The anti-inflammatory cytokines (IL-4 and IL-10) profile analyses suggest the increased anti-inflammatory response in the treated rats as compared to non-injected (control) rats, preferably for the sodium and potassium rich NKN i.e., Na0.8K0.2NbO3 and Na0.2K0.8NbO3. The biochemical analyses revealed no pathological changes in the liver and kidney of particulate treated rats. The present study is the first proof to confirm the non-toxic nature of NKN nanoparticulates which provides a step forward towards the development of prosthetic orthopedic implants using biocompatible piezoelectric NKN ceramics.


Assuntos
Inflamação , Engenharia Tecidual , Animais , Masculino , Nióbio , Óxidos , Potássio , Ratos , Ratos Wistar , Sódio
13.
Biomater Adv ; 140: 213042, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35914328

RESUMO

Bone remodeling processes involve endogenous bioelectrical signals such as piezoelectric charges. Moreover, external electrical stimulation helps in improving the healing capability of injured tissues by modulating the metabolic signaling pathways of cells. Towards this end, the present study reveals the influence of the combined action of electrostatic surface polarization charge and dynamic pulsed electrical stimulation alongwith compositional modification towards improving the osteogenic response of emerging piezo-bioceramics, sodium potassium niobate [NaxK1-xNbO3 (x = 0.2-0.8), NKN]. The dependence of crystal structure on compositions (x) was retrieved by Rietveld refinement and X-ray peak profile analyses. The surface charge, stored in the polarized (@ 25 kV at 500 °C) NaxK1-xNbO3 (x = 0.2, 0.5, 0.8) samples were measured to be 0.52, 0.50 and 0.47 µC/cm2, respectively, using thermally stimulated depolarized current (TSDC). X-ray photoelectron spectroscopy (XPS) survey scan spectra revealed that the polarization process does not alter the surface chemistry of NKN. Negatively charged surfaces are observed to accelerate early-stage adhesion of osteoblast-like cells which further results in enhanced spreading of adhered cells. Subsequently, the dynamic pulsed electrical stimulation of 1 V/cm with the pulse duration of 400 µs was applied, while the cells were being adhered on electrostatically charged surfaces. The quantitative and qualitative analyses revealed that the synergistic action of electrostatic surface polarization charge and dynamic pulsed electrical stimulation further accelerates cell proliferation and differentiation on negatively charged surfaces of Na and K-rich compositions of NKN. The mechanism of augmented cellular activity was analyzed using intracellular Ca2+ measurement.


Assuntos
Osteoblastos , Osteogênese , Diferenciação Celular , Estimulação Elétrica , Sódio
14.
J Biomater Appl ; 36(3): 441-459, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33599133

RESUMO

The bacterial contamination in implants has been recognized as one of the key issues in orthopedics. In this article, a new technique of electrical polarization of various non-piezoelectric and piezoelectric biocompatible ceramics has been explored to develop antibacterial implants. Optimally processed hydroxyapatite (HA), BaTiO3 (BT), CaTiO3 (CT), Na0.5K0.5NbO3 (NKN) and their composites have been used as model biomaterials to verify the concept. The phase evolution analyses and microstructural characterizations were performed for sintered samples. The samples were polarized at polarizing voltage and temperature of 20 kV and 500°C, respectively, for 30 min. The hydrophilicity of polarized surfaces was examined using deionized water and culture media. The polarization induced in-vitro antibacterial study was performed for both, gram positive and gram negative bacteria. The viability of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria reduces significantly on the polarized surfaces. In addition, the influence of polarization on antibacterial response has been explored via various mechanisms such as development of reactive oxygen species (ROS), catalase activity and lipoperoxidation. Furthermore, the cellular response of polarized surfaces was also examined using SaOS2 and MG-63 cells. The viability of SaOS2 and MG-63 cells was observed to increase significantly on negatively polarized surfaces. Overall, the surface treatment enhances the antibacterial response of HA, NKN, BT, CT and their composites surfaces with positive influence on cellular response.


Assuntos
Antibacterianos/química , Materiais Biocompatíveis/química , Cerâmica/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cerâmica/farmacologia , Durapatita/química , Durapatita/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Próteses e Implantes/microbiologia , Eletricidade Estática
15.
Emergent Mater ; 4(1): 57-73, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644691

RESUMO

With the recent COVID-19 pandemic, medical professionals and scientists have encountered an unprecedented trouble to make the latest technological solutions to work. Despite of abundant tools available as well as initiated for diagnosis and treatment, researchers in the healthcare systems were in backfoot to provide concrete answers to the demanding challenge of SARS-CoV-2. It has incited global collaborative efforts in every field from economic, social, and political to dedicated science to confront the growing demand toward solution to this outbreak. Field of materials science has been in the frontline to the current scenario to provide major diagnostic tools, antiviral materials, safety materials, and various therapeutic means such as, antiviral drug design, drug delivery, and vaccination. In the present article, we emphasized the role of materials science to the development of PPE kits such as protecting suits, gloves, and masks as well as disinfection of the surfaces/surroundings. In addition, contribution of materials science towards manufacturing diagnostic devices such as microfluidics, immunosensors as well as biomaterials with a point of care analysis has also been discussed. Further, the efficacy of nanoparticles and scaffolds for antiviral drug delivery and micro-physiological systems as well as materials derived from human tissues for extracorporeal membrane oxygenation (ECMO) devices have been elaborated towards therapeutic applications.

16.
RSC Adv ; 11(16): 9076-9085, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35423422

RESUMO

Melatonin is a potent antioxidant, chemotherapeutic and chemo preventive agent against breast cancer. However, its short half-life is one of the major limitations in its application as a therapeutic drug. To overcome this issue, the green-emitting protein nanodot (PND) was synthesized by a one-step hydrothermal method for loading melatonin. The synthesized pH-7 and pH-2 PND showed a quantum yield of 22.1% and 14.0%, respectively. The physicochemical characterization of both PNDs showed similar morphological and functional activities. Furthermore, the biological efficacy of melatonin-loaded PND (MPND) was evaluated in a breast cancer cell line (MDA-MB-231) for live-cell imaging and enhanced nano-drug delivery efficacy. Interestingly, the permeability of neutral pH PND in both cell cytoplasm and nucleus nullifies the limitations of real-time live-cell imaging, and ensures nuclear drug delivery efficacy. Neutral pH PND showed better cell viability and cytotoxicity as a fluorescence bioimaging probe compared to acidic PND. The bioavailability and cell cytotoxicity effect of MPND on MDA-MB-231 breast cancer cells were studied through confocal and migration assay. Results showed that MPND causes enhanced bioavailability, better cellular uptake, and inhibition of the migration of breast cancer cells as compared to the drug alone. Besides, the synthesized MPND showed no sign of fluorescence quenching even at a high concentration of melatonin, making it an ideal nanocarrier for bioimaging and drug delivery.

17.
Mater Sci Eng C Mater Biol Appl ; 116: 111138, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806311

RESUMO

In the present study, the combined effect of addition of varying concentrations (10-30 vol%) of biocompatible piezoelectric Na0.5K0.5NbO3 (NKN) as well as electrostatic and dynamic pulsed electrical treatment on antibacterial and cellular response of 1393 bioactive glass (1393 BG) has been examined. The phase analyses of the sintered (at 800 °C for 30 min) samples revealed the formation of 1393 BG - NKN composites without any appearance of secondary phases. The addition of 10-30 vol% NKN significantly improved the mechanical behaviour of 1393 BG like, hardness (1.7 to 2 times), fracture toughness (1.3 to 2.6 times), compressive (2.3 to 8 times) and flexural strengths (2 to 3.5 times) than monolithic 1393 BG. The piezoelectric NKN is observed to induce the antibacterial activity in 1393 BG - (10- 30 vol%) NKN composites, while Staphylococcus aureus (S. aureus, gram positive) and Escherichia coli (E. coli, gram negative) bacterial cells were exposed to unpolarized and polarized (20 kV, 500°C for 30 min) sample surfaces. The antibacterial response was examined using disc diffusion, nitro blue tetrazolium (NBT) and MTT assays. The statistical analyses revealed the significant reduction in the viability of bacterial cells on polarized 1393 BG - (10- 30 vol%) NKN composite samples. In addition, the combined effect of electrostatic and dynamic pulsed electrical stimulation (1 V/cm, 500 µs pulses) on the cellular response of 1393 BG and 1393 BG - 30 vol% NKN composites has been analysed with MG-63 osteoblast-like cells. The cell proliferation was observed to increase significantly for the dynamic pulsed electric field treated negatively charged surfaces.


Assuntos
Antibacterianos , Cerâmica , Staphylococcus aureus , Antibacterianos/farmacologia , Escherichia coli , Vidro , Teste de Materiais
18.
Biomaterials ; 258: 120280, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32810650

RESUMO

Bioelectrical phenomenon in natural bone has been well recognized for its role in bone development and fracture healing. For example, the piezoelectricity induced modulation in cellular functionality assists in the repair and regeneration of bone tissue. Against this backdrop, we review here the origin of dielectric and electrical responses (piezo-, pyro- and ferro-electricity) of natural bone along with their consequences in regulating the bone metabolic activities. The concept of piezoelectricity induced osteogenesis has driven the development of piezoimplants for bone regeneration applications. A number of recent studies have been critically analyzed to demonstrate as to how the surface charge polarization or electric field stimulation together with functional properties of piezoelectric biomaterials can synergistically modulate cell functionality, in vitro or tissue regeneration, in vivo. The examples are drawn from a range of piezoelectric bioceramics, (e.g. barium titanate, magnesium silicate etc.) and biopolymers (e.g. polyvinylidene fluoride (PVDF), collagen, etc). The challenging problem of processing the compositionally tailored bioceramics is emphasized in particular reference to (Na, K)NbO3, an implantable biomaterial with the most attractive combination of piezoresponsive properties. Taken together, this review comprehensively emphasizes the appealing relevance of piezo-bioceramics and piezo-biopolymers as next-generation orthopedic biomaterials.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Regeneração Óssea , Osso e Ossos , Estimulação Elétrica
19.
Med Devices Sens ; : e10140, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33173852

RESUMO

The entire world is suffering from a new type of viral disease, occurred by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The present article briefly discussed the genome sequencing and interaction of host cells with SARS-CoV-2. The influence of pre-existing diseases such as diabetes, heart disease and age of the patients on COVID-19 infection is reviewed. The possible treatments of SARS-CoV-2 including antiviral drugs, Chinese traditional treatment and plasma therapy are elaborately discussed. The proper vaccine for COVID-19 is not available till date. However, the trials of pre-existing antiviral vaccines such as, chloroquine/hydroxychloroquine, remdesivir, ritonavir and lopinavir and their consequences are briefly presented. Further, the importance of new materials and devices for the detection and treatment of COVID-19 has also been reviewed. The polymerase chain reaction (PCR)-based, and non-PCR based devices are used for the detection of COVID-19 infection. The non-PCR based devices provide rapid results as compared to PCR based devices.

20.
Mater Sci Eng C Mater Biol Appl ; 107: 110363, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761249

RESUMO

Bacterial infection is among the serious concerns in orthopaedic during/after surgery. Here, we demonstrate a novel technique to induce the antibacterial response in biomaterial substrates via surface polarization. In the present work, hydroxyapatite, HA-xZnO (x = 3.0, 4.5 and 7.5 wt. %) composites were processed by solid state sintering route at 1250 °C for 2 h. After phase evolution analyses, the detailed dielectric and electrical measurements were performed over a wide range of temperature (30-500 °C) and frequency (1 Hz-1 MHz). The impedance spectroscopic analyses suggest the activation energies for grains and grain boundaries for HA and HA-3 wt.% ZnO are (1.36, 1.44 eV), and (1.18, 1.98 eV), respectively. The sintered samples were polarized under polarizing temperature and voltage of 500 °C and 20 kV, respectively. The viability of Escherichia Coli (E. Coli) and Staphylococcus Aureus (S. Aureus) bacteria is observed to reduce significantly for polarized HA-x ZnO (x = 4.5 and 7.5 wt. %) composites as compared to their respective counterparts. On the other hand, polarization supports the proliferation of SaOS2 cells. Overall, the combination of surface polarization and optimal ZnO addition in HA has been demonstrated to significantly improve the antibacterial as well as osteoblast-like SaOS2 cellular response.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Durapatita/química , Óxido de Zinco/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Espectroscopia Dielétrica , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Osteoblastos/efeitos dos fármacos , Espectrofotometria Atômica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa