Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Res ; 237(Pt 2): 117033, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660873

RESUMO

Extensive use of chemicals like herbicides in rice and other fields to manage weeds is expected to have a lasting influence on the soil environment. Considering this rationale, we aimed to decipher the effects of herbicides, Pendimethalin and Pretilachlor, applied at 0.5 and 0.6 kg ha-1, respectively on the rhizosphere microbial community and soil characteristics in the tropical rice field, managed under zero tillage cultivation. The quantity of herbicide residues declined gradually since application up to 60 days thereafter it reached the non-detectable level. Most of the soil variables viz., microbial biomass, soil enzymes etc., exhibited slight reduction in the treated soils compared to the control. A gradual decline was observed in Mineral-N, MBC, MBN and enzyme activities. Quantitative polymerase chain reaction results showed maximal microbial abundance of bacteria, fungi and archaea at mid-flowering stage of rice crop. The 16 rRNA and ITS region targeted amplicons high throughput sequencing microbial metagenomic approach revealed total of 94, 1353, and 510 species for archaea, bacteria and fungi, respectively. The metabarcoding of core microbiota revealed that the archaea comprised of Nitrososphaera, Nitrosocosmicus, and Methanosarcina. In the bacterial core microbiome, Neobacillus, Nitrospira, Thaurea, and Microvigra were found as the predominant taxa. Fusarium, Clonostachys, Nigrospora, Mortierella, Chaetomium, etc., were found in core fungal microbiome. Overall, the study exhibited that the recommended dose of herbicides found to be detrimental to the microbial dynamics, though a negative relation between residues and soil variables was observed that might alter the microbial diversity. The outcomes offer a comprehensive understanding of how herbicides affect the microbial community in zero tillage rice soil, thus has a critical imputation for eco-friendly and sustainable rice agriculture. Further, the long-term studies will be helpful in elucidating the role of identified microbial groups in sustaining the soil fertility and crop productivity.

2.
Environ Res ; 221: 115271, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640933

RESUMO

The residual imidacloprid, a widely used insecticide is causing serious environmental concerns. Knowledge of its biodegradation will help in assessing its residual mass in soil. In view of this, a soil microcosm-based study was performed to test the biodegradation potential of Agrobacterium sp. InxBP2. It achieved ∼88% degradation in 20 days and followed the pseudo-first-order kinetics (k = 0.0511 day-1 and t1/2=7 days). Whole genome sequencing of Agrobacterium sp. InxBP2 revealed a genome size of 5.44 Mbp with 5179 genes. Imidacloprid degrading genes at loci K7A42_07110 (ABC transporter substrate-binding protein), K7A42_07270 (amidohydrolase family protein), K7A42_07385 (ABC transporter ATP-binding protein), K7A42_16,845 (nitronate monooxygenase family protein), and K7A42_20,660 (FAD-dependent monooxygenase) having sequence and functional similarity with known counterparts were identified. Molecular docking of proteins encoded by identified genes with their respective degradation pathway intermediates exhibited significant binding energies (-6.56 to -4.14 kcal/mol). Molecular dynamic simulation discovered consistent interactions and binding depicting high stability of docked complexes. Proteome analysis revealed differential protein expression in imidacloprid treated versus untreated samples which corroborated with the in-silico findings. Further, the detection of metabolites proved the bacterial degradation of imidacloprid. Thus, results provided a mechanistic link between imidacloprid and associated degradative genes/enzymes of Agrobacterium sp. InxBP2. These findings will be of immense significance in carrying out the lifecycle analysis and formulating strategies for the bioremediation of soils contaminated with insecticides like imidacloprid.


Assuntos
Inseticidas , Poluentes do Solo , Biodegradação Ambiental , Simulação de Acoplamento Molecular , Multiômica , Neonicotinoides/análise , Inseticidas/análise , Nitrocompostos/análise , Nitrocompostos/química , Nitrocompostos/metabolismo , Bactérias/metabolismo , Poluentes do Solo/análise , Solo
3.
Funct Integr Genomics ; 20(1): 89-101, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31378834

RESUMO

Cellulose, the most abundant polysaccharide in nature, is a rich source of renewable energy and sustains soil nutrients. Among the microorganisms known to degrade cellulose, bacteria are less studied compared to fungi. In the present work, we have investigated the culturable bacteria actively involved in cellulose degradation in forest and crop field soils. Based on clear zone formation and enzyme activity assay, we identified 7 bacterial strains positive for cellulose degradation. Of these, two most efficient strains (Bacillus cereus strains BHU1 and BHU2) were selected for whole genome sequencing, annotation, and information regarding GC content, number of genes, total subsystems, starch, and cellulose degradation pathways. Average nucleotide identity (ANI) showed more than 90% similarity between both the strains (BHU1 and BHU2) and with B. cereus ATCC 14579. Both the strains have genes and enzyme families like endoglucanase and ß-glucosidase as evident from whole genome sequence. Cellulase containing gene families (GH5, GH8, GH1), and many other carbohydrate-degrading enzymes, were present in both the bacterial strains. Taken together, the results suggest that the strains were efficient in cellulose degradation, and can be used for energy generation and production of value-added product.


Assuntos
Bacillus cereus/genética , Celulose/metabolismo , Genoma Bacteriano , Agricultura , Antibacterianos/biossíntese , Bacillus cereus/enzimologia , Bacillus cereus/metabolismo , Bactérias/enzimologia , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Metabolismo dos Carboidratos/genética , Celulase/metabolismo , Florestas , Genes Bacterianos , Anotação de Sequência Molecular , Metabolismo Secundário/genética , Solo , Sequenciamento Completo do Genoma
4.
Arch Microbiol ; 202(1): 17-29, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31444513

RESUMO

The role and activity of bacterial endophytes remains largely unexplored and detail insight into Indian rice agro ecosystem is still little explored. In this study, we examined the diversity of endophytic bacteria in aerobic rice (variety ARB6) under aerobic and flooded field conditions. Based on 16S rRNA gene RFLP cloning sequencing, 900 clones with 144 representatives (72 aerobic and 72 flooded) revealed majority of clones affiliated to Gammaproteobacteria (64.58%), Betaproteobacteria (9.72%), Alphaproteobacteria (17.36), Firmicutes (6.26%) and Bacteroidetes (2.08). The study suggests that the aerobic rice variety harbours plant growth promoting (PGP) genera (viz. Pantoea, Enterobacter, Paenibacillus, etc). Investigations on aerobic rice under aerobic and flooded conditions revealed high richness and diversity of endophytic bacteria under aerobic condition inferring that the endophytic bacteria are beneficial for rice growth and productivity, and hence, would be helpful in designing better strategies for rice cultivation under drought or water scarce conditions.


Assuntos
Bactérias/genética , Biodiversidade , Endófitos/genética , Oryza/microbiologia , Aerobiose , Anaerobiose , Bactérias/classificação , Ecossistema , Endófitos/classificação , RNA Ribossômico 16S/genética , Clima Tropical
5.
Crit Rev Microbiol ; 44(5): 590-608, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29790396

RESUMO

The early detection of Listeria monocytogenes (L. monocytogenes) and understanding the disease burden is of paramount interest. The failure to detect pathogenic bacteria in the food industry may have terrible consequences, and poses deleterious effects on human health. Therefore, integration of methods to detect and trace the route of pathogens along the entire food supply network might facilitate elucidation of the main contamination sources. Recent research interest has been oriented towards the development of rapid and affordable pathogen detection tools/techniques. An innovative and new approach like biosensors has been quite promising in revealing the foodborne pathogens. In spite of the existing knowledge, advanced research is still needed to substantiate the expeditious nature and sensitivity of biosensors for rapid and in situ analysis of foodborne pathogens. This review summarizes recent developments in optical, piezoelectric, cell-based, and electrochemical biosensors for Listeria sp. detection in clinical diagnostics, food analysis, and environmental monitoring, and also lists their drawbacks and advantages.


Assuntos
Técnicas Biossensoriais/métodos , Listeria monocytogenes/isolamento & purificação , Listeriose/microbiologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Humanos , Listeria monocytogenes/classificação , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento
6.
Crit Rev Biotechnol ; 38(4): 587-599, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29233013

RESUMO

Isoprene, the ubiquitous, highly emitted non-methane volatile hydrocarbon, affects atmospheric chemistry and human health, and this makes its removal from the contaminated environment imperative. Physicochemical degradation of isoprene is inefficient and generates secondary pollutants. Therefore, biodegradation can be considered as the safer approach for its efficient abatement. This review summarizes efforts in this regard that led to tracking the diverse groups of isoprene degrading bacteria such as Methanotrophs, Xanthobacter, Nocardia, Alcaligenes, Rhodococcus, Actinobacteria, Alphaproteobacteria, Bacteriodetes, Pseudomonas, and Alcanivorax. Biodegradation of isoprene by such bacteria in batch and continuous modes has been elaborated. The products, pathways and the key enzymes associated with isoprene biodegradation have also been presented.


Assuntos
Butadienos/metabolismo , Hemiterpenos/metabolismo , Pentanos/metabolismo , Animais , Bactérias/metabolismo , Biodegradação Ambiental , Biotecnologia/métodos , Humanos
7.
Crit Rev Biotechnol ; 36(4): 727-42, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25782532

RESUMO

Chlorpyrifos (CP) is the most commonly used pesticide in agricultural fields worldwide. Exposure to CP and its metabolites creates severe neuron-disorders in human beings. Improper handling and uncontrolled application of CP by farmers have lead to the contamination of surface and ground water bodies. Biodegradation offers an efficient and cost effective method for the removal of CP and other toxic organophosphorus pesticides from the contaminated environment. The degradation of CP by various microorganisms has been investigated by several researchers over the past few years. This review presents a critical summary of the recent published results on the biodegradation of CP. A diverse range of bacterial species such as Agrobacterium sp., Alcaligenes faecalis, Enterobacter sp. Arthrobacter sp. Bacillus pumilus, Pseudomonas sp. etc., fungal species like Trichoderma viridae, Aspergillus niger, Verticillium sp., Acremonium sp. Cladosporium cladosporiodes, etc. and certain algal species viz. Chlorella vulgaris, Spirulina platensis, Synechocystis sp., etc., have been shown to degrade CP. The efficacy of these communities for CP degradation in batch and continuous modes has also been discussed but more studies are required on continuous reactors. Also, the available published information on kinetics of biodegradation of CP along with the available results on molecular biological approaches are discussed in this work.


Assuntos
Clorpirifos/metabolismo , Inseticidas/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Clorófitas/metabolismo , Fungos/metabolismo
8.
BMC Microbiol ; 14: 241, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25195727

RESUMO

BACKGROUND: Listeria monocytogenes, a foodborne pathogen is ubiquitous to different environments including the agroecosystem. The organism poses serious public health problem. Therefore, an attempt has been made to gain further insight to their antibiotic susceptibility, serotypes and the virulence genes. RESULTS: Out of the 10 vegetables selected, 6 (brinjal, cauliflower, dolichos-bean, tomato, chappan-kaddu and chilli), 20 isolates (10%) tested positive for L. monocytogenes. The prevalence of the pathogen in the respective rhizosphere soil samples was 5%. Noticeably, L. monocytogenes was absent from only cabbage, broccoli, palak and cowpea, and also the respective rhizospheric soils. The 30 isolates + ve for pathogenicity, belonged to serogroup 4b, 4d or 4e, and all were positive for inlA, inlC, inlJ, plcA, prfA, actA, hlyA and iap gene except one (VC3) among the vegetable isolates that lacked the plcA gene. ERIC- and REP-PCR collectively revealed that isolates from vegetables and their respective rhizospheric soils had distinct PCR fingerprints. CONCLUSIONS: The study demonstrates the prevalence of pathogenic L. monocytogenes in the selected agricultural farm samples. The increase in the number of strains resistant to ciprofloxacin and/or cefoxitin seems to pose serious public health consequences.


Assuntos
Antibacterianos/farmacologia , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Sorogrupo , Microbiologia do Solo , Verduras/microbiologia , Fatores de Virulência/genética , Variação Genética , Listeria monocytogenes/classificação , Listeria monocytogenes/efeitos dos fármacos , Tipagem Molecular
9.
Crit Rev Biotechnol ; 34(2): 101-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23057686

RESUMO

Over the past few years biodegradation of trichloroethylene (TCE) using different microorganisms has been investigated by several researchers. In this review article, an attempt has been made to present a critical summary of the recent results related to two major processes--reductive dechlorination and aerobic co-metabolism used for TCE biodegradation. It has been shown that mainly Clostridium sp. DC-1, KYT-1, Dehalobacter, Dehalococcoides, Desulfuromonas, Desulfitobacterium, Propionibacterium sp. HK-1, and Sulfurospirillum bacterial communities are responsible for the reductive dechlorination of TCE. Efficacy of bacterial communities like Nitrosomonas, Pseudomonas, Rhodococcus, and Xanthobacter sp. etc. for TCE biodegradation under aerobic conditions has also been examined. Mixed cultures of diazotrophs and methanotrophs have been used for TCE degradation in batch and continuous cultures (biofilter) under aerobic conditions. In addition, some fungi (Trametes versicolor, Phanerochaete chrysosporium ME-446) and Actinomycetes have also been used for aerobic biodegradation of TCE. The available information on kinetics of biofiltration of TCE and its degradation end-products such as CO2 are discussed along with the available results on the diversity of bacterial community obtained using molecular biological approaches. It has emerged that there is a need to use metabolic engineering and molecular biological tools more intensively to improve the robustness of TCE degrading microbial species and assess their diversity.


Assuntos
Biodegradação Ambiental , Biotecnologia , Tricloroetileno , Archaea , Bactérias , Reatores Biológicos , Fungos
10.
Mol Biol Rep ; 41(12): 8219-29, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205124

RESUMO

The discrimination between Listeria monocytogenes and Listeria species has been detected. The 16S rRNA and hlyA were PCR amplified with set of oligonucleotide primers with flank 1,500 and 456 bp fragments, respectively. Based on the differences in 16S rRNA and hlyA genes, a total 80 isolates from different environmental, food and clinical samples confirmed it to be L. monocytogenes. The 16S rRNA sequence similarity suggested that the isolates were similar to the previously reported ones from different habitats by others. The phylogenetic interrelationships of the genus Listeria were investigated by sequencing of 16S rRNA and hlyA gene. The 16S rRNA sequence indicated that genus Listeria is comprised of following closely related but distinct lines of descent, one is the L. monocytogenes species group (including L. innocua, L. ivanovii, L. seeligeri and L. welshimeri) and other, the species L. grayi, L. rocourtiae and L. fleischmannii. The phylogenetic tree based on hlyA gene sequence clearly differentiates between the L. monocytogenes, L. ivanovii and L. seeligeri. In the present study, we identified 80 isolates of L. monocytogenes originating from different clinical, food and environmental samples based on 16S rRNA and hlyA gene sequence similarity.


Assuntos
Toxinas Bacterianas/análise , Proteínas de Choque Térmico/análise , Proteínas Hemolisinas/análise , Listeria monocytogenes/classificação , Listeria monocytogenes/isolamento & purificação , RNA Ribossômico 16S/análise , Análise de Sequência de RNA/métodos , Animais , Laticínios/microbiologia , Evolução Molecular , Microbiologia de Alimentos , Humanos , Listeria monocytogenes/genética , Listeriose/microbiologia , Leite/microbiologia , Dados de Sequência Molecular , Filogenia , Microbiologia do Solo , Microbiologia da Água
11.
FEMS Microbes ; 5: xtae004, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463555

RESUMO

Antimicrobial resistance (AMR) contamination in the environment is one of the most significant worldwide threats of the 21st century. Since sludge is heavily exposed to diverse contaminants, including pharmaceuticals, the inhabitant bacterial population is expected to exhibit resistance to antimicrobial agents. In this study, sewage treatment plant (STP) sludge samples were analyzed to assess the antibiotic-resistant bacterial population, abundance of AMR genes (ermF, qnrS, Sul1, blaGES, blaCTX-M, and blaNDM), and mobile genetic elements (intl1 and IS26). Out of 16, six bacterial isolates exhibited resistance to 13 antibiotics with a high multiple antibiotic resistance index (MARI) (0.93) and high metal tolerance. Quantitative polymerase chain reaction showed the abundance of target genes ranging from 6.6 × 103 to 6.5 × 108 copies g-1 sludge. The overall outcome reveals that STP sludge comprised varied multidrug-resistant bacterial populations. It will give insights into the functions of heavy metals and biofilm development in the selection and spread of AMR genes and the associated bacteria. Therefore, the application of sludge needs proper screening for AMR and metal contamination prior to its countless applications. This study will contribute immensely to the risk analysis of STP effluents on environmental health, including control of AMR transmission.

12.
Bioresour Technol ; 401: 130732, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677386

RESUMO

Acetaminophen (APAP) is a frequently used, over-the-counter analgesic and antipyretic medication. Considering increase in global consumption, its ubiquity in environment with potential toxic impacts has become a cause of great concern. Hence, bioremediation of this emerging contaminant is of paramount significance. The present study incorporates a microcosm centric omics approach to gain in-depth insights into APAP degradation by Paracoccus sp. APAP_BH8. It can metabolize APAP (300 mg kg-1) within 16 days in soil microcosms. Genome analysis revealed potential genes capable of mediating degradation includes M20 aminoacylase family protein, guanidine deaminase, 4-hydroxybenzoate 3-monooxygenase, and 4-hydroxyphenylpyruvate dioxygenase. Whole proteome analysis showed differential expression of enzymes and bioinformatics provided evidence for stable binding of intermediates at the active site of considered enzymes. Metabolites identified were 4-aminophenol, hydroquinone, and 3-hydroxy-cis, cis-muconate. Therefore, Paracoccus sp. APAP_BH8 with versatile enzymatic and genetic attributes can be a promising candidate for formulating improved in situ APAP bioremediation strategies.


Assuntos
Acetaminofen , Biodegradação Ambiental , Genômica , Proteômica , Acetaminofen/metabolismo , Proteômica/métodos , Genômica/métodos , Paracoccus/metabolismo , Paracoccus/genética , Metabolômica , Proteoma/metabolismo
13.
Sci Total Environ ; 914: 169911, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185156

RESUMO

Herbicide application is a common practice in intensive agriculture. However, accumulating herbicide residues in the ecosystem affects important soil attributes. The effect of two herbicides, pendimethalin and pretilachlor, on soil biochemical properties and microbial community composition was studied in a transplanted paddy field. Results reveal a gradual decline in herbicide residue up to 60 days after application. Changes in soil microbiological and biochemical properties (microbial biomass, enzymes, respiration, etc.) showed an inconsistent pattern across the treatments. Quantitative polymerase chain reaction analysis showed the archaeal, bacterial and fungal populations to be of higher order in control soil compared to the treated one. Amplicon sequencing (16S rRNA and ITS genes) exhibited that besides the unclassified genera, ammonia-oxidizing Crenarchaeota and the group represented by Candidatus Nitrososphaera were dominant in both the control and treated samples. Other archaeal genera viz. Methanosarcina and Bathyarchaeia showed a slight decrease in relative abundance of control (0.5 %) compared to the treated soil (0.7 %). Irrespective of treatments, the majority of bacterial genera comprised unclassified and uncultured species, accounting for >64-75 % in the control group and over 78.29 % in the treated samples. Members of Vicinamibacteraceae, Bacillus and Bryobacter were dominant in control samples. Dominant fungal genera belonging to unclassified groups comprised Curvularia, Aspergillus, and Emericellopsis in the control group, whereas Paraphysoderma and Emericellopsis in the herbicide-treated groups. Inconsistent response of soil properties and microbial community composition is evident from the present study, suggesting that the recommended dose of herbicides might not result in any significant change in microbial community composition. The findings of this investigation will help in the formulation of a framework for risk assessment and maintaining sustainable rice cultivation in herbicide- amended soils.


Assuntos
Herbicidas , Microbiota , Oryza , Solo/química , Herbicidas/análise , Oryza/genética , RNA Ribossômico 16S/genética , Archaea/genética , Bactérias/genética , Acidobacteria/genética , Microbiologia do Solo
14.
BMC Microbiol ; 13: 122, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23718216

RESUMO

BACKGROUND: The global area under brinjal cultivation is expected to be 1.85 million hectare with total fruit production about 32 million metric tons (MTs). Brinjal cultivars are susceptible to a variety of stresses that significantly limit productivity. The most important biotic stress is caused by the Brinjal fruit and shoot Borer (FSB) forcing farmers to deploy high doses of insecticides; a matter of serious health concern. Therefore, to control the adverse effect of insecticides on the environment including the soil, transgenic technology has emerged as the effective alternative. However, the reports, regarding the nature of interaction of transgenic crops with the native microbial community are inconsistent. The effect of a Bt transgenic brinjal expressing the bio-insecticidal protein (Cry1Ac) on the rhizospheric community of actinomycetes has been assessed and compared with its non-transgenic counterpart. RESULTS: Significant variation in the organic carbon observed between the crops (non-Bt and Bt brinjal) may be due to changes in root exudates quality and composition mediated by genetic attributes of Bt transgenic brinjal. Real time quantitative PCR indicated significant differences in the actinomycetes- specific 16S rRNA gene copy numbers between the non-Bt (5.62-27.86) × 1011 g-1 dws and Bt brinjal planted soil (5.62-24.04) × 1011 g-1 dws. Phylogenetic analysis indicated 14 and 11, actinomycetes related groups in soil with non-Bt and Bt brinjal crop, respectively. Micrococaceaea and Nocardiodaceae were the dominant groups in pre-vegetation, branching, flowering, maturation and post-harvest stage. However, Promicromonosporaceae, Streptosporangiaceae, Mycobacteriaceae, Geodermatophilaceae, Frankiaceae, Kineosporaceae, Actisymmetaceae and Streptomycetaceae were exclusively detected in a few stages in non-Bt brinjal rhizosphere soil while Nakamurellaceae, Corynebactericeae, Thermomonosporaceae and Pseudonocardiaceae in Bt brinjal counterpart. CONCLUSION: Field trails envisage that cultivation of Bt transgenic brinjal had negative effect on organic carbon which might be attributed to genetic modifications in the plant. Changes in the organic carbon also affect the actinomycetes population size and diversity associated with rhizospheric soils of both the crops. Further long-term study is required by taking account the natural cultivar apart from the Bt brinjal and its near-isogenic non-Bt brinjal with particular reference to the effects induced by the Bt transgenic brinjal across different plant growth stages.


Assuntos
Actinobacteria/crescimento & desenvolvimento , Consórcios Microbianos , Rizosfera , Microbiologia do Solo , Solanum melongena/microbiologia , Actinobacteria/classificação , Carbono/química , DNA Bacteriano/genética , Filogenia , Plantas Geneticamente Modificadas/microbiologia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Solo/química
15.
Microb Ecol ; 66(4): 927-39, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24046073

RESUMO

To elucidate whether the transgenic crop alters the rhizospheric bacterial community structure, a 2-year study was performed with Cry1Ac gene-inserted brinjal crop (Bt) and their near isogenic non-transformed trait (non-Bt). The event of Bt crop (VRBT-8) was screened using an insect bioassay and enzyme-linked immunosorbent assay. Soil moisture, NH4 (+)-N, NO3 (-)-N, and PO4 (-)-P level had non-significant variation. Quantitative polymerase chain reaction revealed that abundance of bacterial 16S rRNA gene copies were lower in soils associated with Bt brinjal. Microbial biomass carbon (MBC) showed slight reduction in Bt brinjal soils. Higher MBC values in the non-Bt crop soil may be attributed to increased root activity and availability of readily metabolizable carbon compounds. The restriction fragment length polymorphism of PCR-amplified rRNA gene fragments detected 13 different bacterial groups with the exclusive presence of ß-Proteobacteria, Chloroflexus, Planctomycetes, and Fusobacteria in non-Bt, and Cyanobacteria and Bacteroidetes in Bt soils, respectively, reflecting minor changes in the community structure. Despite the detection of Cry1Ac protein in the rhizospheric soil, the overall impact of Cry1Ac expressing Bt brinjal was less compared to that due to seasonal changes.


Assuntos
Bactérias/isolamento & purificação , Plantas Geneticamente Modificadas/microbiologia , Rizosfera , Microbiologia do Solo , Solanum melongena/microbiologia , Toxinas de Bacillus thuringiensis , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodiversidade , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas/genética , Solo/química , Solanum melongena/genética
16.
J Biomol Struct Dyn ; 41(9): 3821-3834, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35380094

RESUMO

The whole genome sequencing of a novel isoprene degrading strain of Sphingobium sp. BHU LFT2, its in silico analysis for identifying and characterizing enzymes, especially isoprene monooxygenases (IsoMO), which initiate the degradation process, and in vitro validation with cell extract of optimal temperature and pH and analysis for utilizing isoprene as the preferential substrate, were conducted. The most efficient monooxygenase was identified through comparative analyses using molecular docking followed by molecular dynamics simulation approach. The in silico results revealed high thermostability for most of the monooxygenases. Most potent monooxygenase with locus ID JQK15_20300 exhibiting high sequence similarity with known monooxygenases of isoprene-degrading Rhodococcus sp. LB1 and SC4 strains was identified. Interaction energy of -17.25 kJ/mol for JQK15_20300 with isoprene, was almost similar as that analysed for above-mentioned similar known counterparts, was exhibited by the molecular docking. Molecular dynamic simulation of 100 ns and free energy analysis of JQK15_20300 in the complex with isoprene gave persistent interaction of isoprene with JQK15_20300 during the simulation with high average binding energy of -47.13 kJ/mol thus proving higher affinity of JQK15_20300 for isoprene. The study revealed that the highly efficient isoprene degrading strain of Sphingobium sp. BHU LFT2 having effective monooxygenase could be utilized for large-scale applications including detoxification of air contaminated with isoprene in closed working systems.Communicated by Ramaswamy H. Sarma.


Assuntos
Butadienos , Oxigenases de Função Mista , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Simulação de Acoplamento Molecular , Sequência de Bases , Butadienos/metabolismo
17.
Res Sq ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37333229

RESUMO

Fipronil (C12H4Cl2F6N4OS), is a commonly used insecticide effective against numerous insects and pests. Its immense application poses harmful effects on various non-target organisms as well. Therefore, searching the effective methods for the degradation of fipronil is imperative and logical. In this study, fipronil-degrading bacterial species are isolated and characterized from diverse environments using a culture-dependent method followed by 16S rRNA gene sequencing. Phylogenetic analysis showed the homology of organisms with Acinetobacter sp., Streptomyces sp., Pseudomonas sp., Agrobacterium sp., Rhodococcus sp., Kocuria sp., Priestia sp., Bacillus sp., Pantoea sp. The bacterial degradation potential for fipronil was analyzed through High-Performance Liquid Chromatography. Incubation-based degradation studies revealed that Pseudomonas sp. and Rhodococcus sp. were found to be the most potent isolates that degraded fipronil at 100 mg L-1 concentration, with removal efficiencies of 85.97 % and 83.64 %, respectively. Kinetic parameter studies, following the Michaelis-Menten model, also revealed the high degradation efficiency of these isolates. Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed fipronil sulfide, benzaldehyde, (phenyl methylene) hydrazone, isomenthone, etc., as major metabolites of fipronil degradation. Overall investigation suggests that native bacterial species isolated from the contaminated environments could be efficiently utilized for the biodegradation of fipronil. The outcome derived from this study has immense significance in formulating an approach for bioremediation of fipronil-contaminated surroundings.

18.
Plants (Basel) ; 12(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903927

RESUMO

The bacteria harboring phoD encodes alkaline phosphatase (ALP), a secretory enzyme that hydrolyzes organic phosphorous (P) to a usable form in the soil. The impact of farming practices and crop types on phoD bacterial abundance and diversity in tropical agroecosystems is largely unknown. In this research, the aim was to study the effect of farming practices (organic vs. conventional) and crop types on the phoD-harboring bacterial community. A high-throughput amplicon (phoD gene) sequencing method was employed for the assessment of bacterial diversity and qPCR for phoD gene abundance. Outcomes revealed that soils treated for organic farming have high observed OTUs, ALP activity, and phoD population than soils managed under conventional farming with the trend of maize > chickpea > mustard > soybean vegetated soils. The relative abundance of Rhizobiales exhibited dominance. Ensifer, Bradyrhizobium, Streptomyces, and Pseudomonas were observed as dominant genera in both farming practices. Overall, the study demonstrated that organic farming practice favors the ALP activity, phoD abundance, and OTU richness which varied across crop types with maize crops showing the highest OTUs followed by chickpea, mustard, and least in soybean cropping.

19.
Environ Sci Pollut Res Int ; 30(48): 106316-106329, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37726627

RESUMO

Fipronil (C12H4Cl2F6N4OS) is a commonly used insecticide effective against numerous insects and pests. Its immense application poses harmful effects on various non-target organisms as well. Therefore, searching the effective methods for the degradation of fipronil is imperative and logical. In this study, fipronil-degrading bacterial species are isolated and characterized from diverse environments using a culture-dependent method followed by 16S rRNA gene sequencing. Phylogenetic analysis showed the homology of organisms with Acinetobacter sp., Streptomyces sp., Pseudomonas sp., Agrobacterium sp., Rhodococcus sp., Kocuria sp., Priestia sp., Bacillus sp., Aeromonas sp., and Pantoea sp. The bacterial degradation potential for fipronil was analyzed through high-performance liquid chromatography (HPLC). Incubation-based degradation studies revealed that Pseudomonas sp. and Rhodococcus sp. were found to be the most potent isolates that degraded fipronil at 100 mg L-1 concentration, with removal efficiencies of 85.9 and 83.6%, respectively. Kinetic parameter studies, following the Michaelis-Menten model, also revealed the high degradation efficiency of these isolates. Gas chromatography-mass spectrometry (GC-MS) analysis revealed fipronil sulfide, benzaldehyde, (phenyl methylene) hydrazone, isomenthone, etc., as major metabolites of fipronil degradation. Overall investigation suggests that native bacterial species isolated from the contaminated environments could be efficiently utilized for the biodegradation of fipronil. The outcome derived from this study has immense significance in formulating an approach for bioremediation of fipronil-contaminated surroundings.


Assuntos
Poluentes do Solo , Filogenia , Biodegradação Ambiental , RNA Ribossômico 16S/genética , Poluentes do Solo/análise
20.
Environ Pollut ; 324: 121402, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889658

RESUMO

Imidacloprid, a broad-spectrum insecticide, is widely used against aphids and other sucking insects. As a result, its toxic effect is becoming apparent in non-targeted organisms. In-situ bioremediation of residual insecticide from the environment utilizing efficient microbes would be helpful in reducing its load. In the present work, in-depth genomics, proteomics, bioinformatics, and metabolomics analyses were employed to reveal the potential of Sphingobacterium sp. InxBP1 for in-situ degradation of imidacloprid. The microcosm study revealed ∼79% degradation with first-order kinetics (k = 0.0726 day-1). Genes capable of mediating oxidative degradation of imidacloprid and subsequent decarboxylation of intermediates were identified in the bacterial genome. Proteome analysis demonstrated significant overexpression of the enzymes coded by these genes. Bioinformatic analysis revealed significant affinity and binding of the identified enzymes for their respective substrates (the degradation pathway intermediates). The nitronate monooxygenase (K7A41 01745), amidohydrolase (K7A41 03835 and K7A41 07535), FAD-dependent monooxygenase (K7A41 12,275), and ABC transporter enzymes (K7A41 05325, and K7A41 05605) were found to be effective in facilitating the transport and intracellular degradation of imidacloprid. The metabolomic study identified the pathway intermediates and validated the proposed mechanism and functional role of the identified enzymes in degradation. Thus, the present investigation provides an efficient imidacloprid degrading bacterial species as evidenced by its genetic attributes which can be utilized or further improved to develop technologies for in-situ remediation.


Assuntos
Inseticidas , Inseticidas/metabolismo , Neonicotinoides , Nitrocompostos/metabolismo , Oxigenases de Função Mista
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa