Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(16): 4206-4211, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29581305

RESUMO

LMNA encodes the A-type lamins that are part of the nuclear scaffold. Mutations in LMNA can cause a variety of disorders called laminopathies, including Hutchinson-Gilford progeria syndrome (HGPS), atypical Werner syndrome, and Emery-Dreifuss muscular dystrophy. Previous work has shown that treatment of HGPS cells with the mTOR inhibitor rapamycin or with the rapamycin analog everolimus corrects several of the phenotypes seen at the cellular level-at least in part by increasing autophagy and reducing the amount of progerin, the toxic form of lamin A that is overproduced in HGPS patients. Since other laminopathies also result in production of abnormal and potentially toxic lamin proteins, we hypothesized that everolimus would also be beneficial in those disorders. To test this, we applied everolimus to fibroblast cell lines from six laminopathy patients, each with a different mutation in LMNA Everolimus treatment increased proliferative ability and delayed senescence in all cell lines. In several cell lines, we observed that with treatment, there is a significant improvement in nuclear blebbing, which is a cellular hallmark of HGPS and other lamin disorders. These preclinical results suggest that everolimus might have clinical benefit for multiple laminopathy syndromes.


Assuntos
Everolimo/farmacologia , Fibroblastos/efeitos dos fármacos , Lamina Tipo A/deficiência , Distrofia Muscular de Emery-Dreifuss/genética , Progéria/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Síndrome de Werner/genética , Biomarcadores , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Senescência Celular/efeitos dos fármacos , Humanos , Lamina Tipo A/genética , Distrofia Muscular de Emery-Dreifuss/patologia , Mutação , Fosforilação/efeitos dos fármacos , Progéria/patologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteína S6 Ribossômica/metabolismo , Síndrome de Werner/patologia
2.
Nucleic Acids Res ; 41(6): e70, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23314155

RESUMO

Transgenic animals are extensively used to model human disease. Typically, the transgene copy number is estimated, but the exact integration site and configuration of the foreign DNA remains uncharacterized. When transgenes have been closely examined, some unexpected configurations have been found. Here, we describe a method to recover transgene insertion sites and assess structural rearrangements of host and transgene DNA using microarray hybridization and targeted sequence capture. We used information about the transgene insertion site to develop a polymerase chain reaction genotyping assay to distinguish heterozygous from homozygous transgenic animals. Although we worked with a bacterial artificial chromosome transgenic mouse line, this method can be used to analyse the integration site and configuration of any foreign DNA in a sequenced genome.


Assuntos
Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA , Transgenes , Animais , Cromossomos Artificiais Bacterianos , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase
3.
Proc Natl Acad Sci U S A ; 109(9): 3446-50, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22331910

RESUMO

Imprinted gene expression associated with Prader-Willi syndrome (PWS) and Angelman syndrome (AS) is controlled by two imprinting centers (ICs), the PWS-IC and the AS-IC. The PWS-IC operates in cis to activate transcription of genes that are expressed exclusively from the paternal allele. We have created a conditional allele of the PWS-IC to investigate its developmental activity. Deletion of the paternal PWS-IC in the embryo before implantation abolishes expression of the paternal-only genes in the neonatal brain. Surprisingly, deletion of the PWS-IC in early brain progenitors does not affect the subsequent imprinted status of PWS/AS genes in the newborn brain. These results indicate that the PWS-IC functions to protect the paternal epigenotype at the epiblast stage of development but is dispensable thereafter.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Síndrome de Prader-Willi/genética , Alelos , Animais , Blastocisto , Encéfalo/embriologia , Metilação de DNA , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Síndrome de Prader-Willi/fisiopatologia , Regiões Promotoras Genéticas/genética , RNA Nucleolar Pequeno/biossíntese , RNA Nucleolar Pequeno/genética , Deleção de Sequência , Fatores de Tempo , Transcrição Gênica , Proteínas Centrais de snRNP/biossíntese , Proteínas Centrais de snRNP/genética
4.
Hum Mol Genet ; 20(17): 3461-6, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21659337

RESUMO

The human chromosomal 15q11-15q13 region is subject to both maternal and paternal genomic imprinting. Absence of paternal gene expression from this region results in Prader-Willi syndrome (PWS), while absence of maternal gene expression leads to Angelman syndrome. Transcription of paternally expressed genes in the region depends upon an imprinting center termed the PWS-IC. Imprinting defects in PWS can be caused by microdeletions and the smallest commonly deleted region indicates that the PWS-IC lies within a region of 4.3 kb. The function and location of the PWS-IC is evolutionarily conserved, but delineation of the PWS-IC in mouse has proven difficult. The first targeted mutation of the PWS-IC, a deletion of 35 kb spanning Snrpn exon 1, exhibited a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally showed a complete loss of paternal gene expression and died neonatally. A reported deletion of 4.8 kb showed only a reduction in paternal gene expression and incomplete penetrance of neonatal lethality, suggesting that some PWS-IC function had been retained. Here, we report that a 6 kb deletion spanning Snrpn exon 1 exhibits a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally lack detectable expression of all PWS genes and paternal silencing of Ube3a, exhibit maternal DNA methylation imprints at Ndn and Mkrn3 and suffer failure to thrive leading to a fully penetrant neonatal lethality.


Assuntos
Impressão Genômica/genética , Síndrome de Prader-Willi/genética , Animais , Southern Blotting , Linhagem Celular , Metilação de DNA/genética , Humanos , Camundongos , Mutação/genética
5.
Hum Mol Genet ; 18(22): 4227-38, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19656775

RESUMO

Imprinting, non-coding RNA and chromatin organization are modes of epigenetic regulation that modulate gene expression and are necessary for mammalian neurodevelopment. The only two known mammalian clusters of genes encoding small nucleolar RNAs (snoRNAs), SNRPN through UBE3A(15q11-q13/7qC) and GTL2(14q32.2/12qF1), are neuronally expressed, localized to imprinted loci and involved in at least five neurodevelopmental disorders. Deficiency of the paternal 15q11-q13 snoRNA HBII-85 locus is necessary to cause the neurodevelopmental disorder Prader-Willi syndrome (PWS). Here we show epigenetically regulated chromatin decondensation at snoRNA clusters in human and mouse brain. An 8-fold allele-specific decondensation of snoRNA chromatin was developmentally regulated specifically in maturing neurons, correlating with HBII-85 nucleolar accumulation and increased nucleolar size. Reciprocal mouse models revealed a genetic and epigenetic requirement of the 35 kb imprinting center (IC) at the Snrpn-Ube3a locus for transcriptionally regulated chromatin decondensation. PWS human brain and IC deletion mouse Purkinje neurons showed significantly decreased nucleolar size, demonstrating the essential role of the 15q11-q13 HBII-85 locus in neuronal nucleolar maturation. These results are relevant to understanding the molecular pathogenesis of multiple human neurodevelopmental disorders, including PWS and some causes of autism.


Assuntos
Nucléolo Celular/química , Montagem e Desmontagem da Cromatina , Impressão Genômica , Neurônios/metabolismo , Síndrome de Prader-Willi/genética , RNA Nucleolar Pequeno/genética , Adulto , Animais , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cromatina/metabolismo , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neurônios/química , Síndrome de Prader-Willi/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Centrais de snRNP/genética , Proteínas Centrais de snRNP/metabolismo
6.
Neurogenetics ; 11(2): 145-51, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19894069

RESUMO

Mutations affecting a cluster of coordinately regulated imprinted genes located at 15q11-q13 underlie both Prader-Willi syndrome (PWS) and Angelman syndrome (AS). Disruption of the predominately maternally expressed UBE3A locus is sufficient to meet diagnostic criteria for AS. However, AS patients with a deletion of the entire PWS/AS locus often have more severe traits than patients with point mutations in UBE3A suggesting that other genes contribute to the syndrome. ATP10A resides 200 kb telomeric to UBE3A and is of uncertain imprinted status. An initial report indicated bialleleic expression of the murine Atp10a in all tissues, but a subsequent report suggests that Atp10a is predominantly maternally expressed in the hippocampus and olfactory bulb. To resolve this discrepancy, we investigated Atp10a allelic expression in the brain, DNA methylation status, and sensitivity to mutations of the PWS imprinting center, an element required for imprinted gene expression in the region. We report that Atp10a is biallelically expressed in both the newborn and adult brain, and Atp10a allelic expression is insensitive to deletion or mutation of the PWS imprinting center. The CpG island associated with Atp10a is hypomethylated, a result consistent with the notion that Atp10a is not an imprinted gene.


Assuntos
Adenosina Trifosfatases/genética , Impressão Genômica , Proteínas de Membrana Transportadoras/genética , Família Multigênica , Síndrome de Angelman/genética , Animais , Ilhas de CpG , Metilação de DNA , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo Genético , Síndrome de Prader-Willi/genética , Análise de Sequência de DNA
7.
Hum Mol Genet ; 15(3): 393-404, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16368707

RESUMO

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are caused by the loss of imprinted gene expression from chromosome 15q11-q13. Imprinted gene expression in the region is regulated by a bipartite imprinting centre (IC), comprising the PWS-IC and the AS-IC. The PWS-IC is a positive regulatory element required for bidirectional activation of a number of paternally expressed genes. The function of the AS-IC appears to be to suppress PWS-IC function on the maternal chromosome through a methylation imprint acquired during female gametogenesis. Here we have placed the entire mouse locus under the control of a human PWS-IC by targeted replacement of the mouse PWS-IC with the equivalent human region. Paternal inheritance of the human PWS-IC demonstrates for the first time that a positive regulatory element in the PWS-IC has diverged. These mice show postnatal lethality and growth deficiency, phenotypes not previously attributed directly to the affected genes. Following maternal inheritance, the human PWS-IC is able to acquire a methylation imprint in mouse oocytes, suggesting that acquisition of the methylation imprint is conserved. However, the imprint is lost in somatic cells, showing that maintenance has diverged. This maternal imprinting defect results in expression of maternal Ube3a-as and repression of Ube3a in cis, providing evidence that Ube3a is regulated by its antisense and creating the first reported mouse model for AS imprinting defects.


Assuntos
Síndrome de Angelman/genética , Impressão Genômica/genética , Animais , Autoantígenos , Sequência Conservada , Metilação de DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Recém-Nascido/crescimento & desenvolvimento , Padrões de Herança , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Fenótipo , Síndrome de Prader-Willi/genética , Regiões Promotoras Genéticas/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Ubiquitina-Proteína Ligases/genética , Proteínas Centrais de snRNP
8.
Hum Mol Genet ; 13(23): 2971-7, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15459179

RESUMO

Prader-Willi syndrome (PWS), most notably characterized by infantile hypotonia, short stature and morbid obesity, results from deficiencies in multiple genes that are subject to genomic imprinting. The usefulness of current mouse models of PWS has been limited by postnatal lethality in affected mice. Here, we report the survival of the PWS-imprinting center (IC) deletion mice on a variety of strain backgrounds. Expression analyses of the genes affected in the PWS region suggest that while there is low-level expression from both parental alleles in PWS-IC deletion pups, this expression does not explain their survival on certain strain backgrounds. Rather, the data provide evidence for strain-specific modifier genes that support the survival of PWS-IC deletion mice.


Assuntos
Deleção de Genes , Genes Letais , Síndrome de Prader-Willi/genética , Animais , Sequência de Bases , Northern Blotting , Primers do DNA , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa