Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; : e0012824, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162434

RESUMO

Upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), patients with critical coronavirus disease 2019 (COVID-19) present with life-threatening respiratory distress, pulmonary damage, and cytokine storm. One unexplored component in COVID-19 is the neuropeptide calcitonin gene-related peptide (CGRP), which is highly abundant in the airways and could converge in multiple aspects of COVID-19-related pulmonary pathophysiology. Whether CGRP affects SARS-CoV-2 infection directly remains elusive. We show that in critical COVID-19 patients, CGRP is increased in both plasma and lungs. Importantly, CGRP pulmonary levels are elevated in early SARS-CoV-2-positive patients and restored to baseline upon subsequent viral clearance in SARS-CoV-2-negative patients. We further show that CGRP and its stable analog SAX directly inhibit infection of bronchial Calu-3 epithelial cells with SARS-CoV-2 Omicron and Alpha variants in a dose-dependent manner. Both pre- and post-infection treatments with CGRP and/or SAX are enough to block SARS-CoV-2 productive infection of Calu-3 cells. CGRP-mediated inhibition occurs via activation of the CGRP receptor and involves down-regulation of both SARS-CoV-2 entry receptors at the surface of Calu-3 cells. Together, we propose that increased pulmonary CGRP mediates beneficial viral clearance in critical COVID-19 patients by directly inhibiting SARS-CoV-2 propagation. Hence, CGRP-based interventions could be harnessed for management of COVID-19.IMPORTANCEThe neuropeptide CGRP is highly abundant in the airways. Due to its immunomodulatory, vasodilatory, and anti-viral functions, CGRP could affect multiple aspects of COVID-19-related pulmonary pathophysiology. Yet, the interplay between CGRP and SARS-CoV-2 during COVID-19 remains elusive. Herein, we show that pulmonary levels of CGRP are increased in critical COVID-19 patients, at an early stage of their disease when patients are SARS-CoV-2-positive. Upon subsequent viral clearance, CGRP levels are restored to baseline in SARS-CoV-2-negative patients. We further show that pre- and post-infection treatments with CGRP directly inhibit infection of Calu-3 bronchial epithelial cells with SARS -CoV-2, via activation of the CGRP receptor leading to decreased expression of both SARS-CoV-2 entry receptors. Together, we propose that increased pulmonary CGRP is beneficial in COVID-19, as CGRP-mediated inhibition of SARS-CoV-2 infection could contribute to viral clearance in critical COVID-19 patients. Accordingly, CGRP-based formulations could be useful for COVID-19 management.

2.
Cell Mol Life Sci ; 81(1): 335, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39117755

RESUMO

Although the Hepatitis E virus (HEV) is an emerging global health burden, little is known about its interaction with the host cell. HEV genome encodes three proteins including the ORF2 capsid protein that is produced in different forms, the ORF2i protein which is the structural component of viral particles, and the ORF2g/c proteins which are massively secreted but are not associated with infectious material. We recently demonstrated that the endocytic recycling compartment (ERC) is hijacked by HEV to serve as a viral factory. However, host determinants involved in the subcellular shuttling of viral proteins to viral factories are unknown. Here, we demonstrate that the AP-1 adaptor complex plays a pivotal role in the targeting of ORF2i protein to viral factories. This complex belongs to the family of adaptor proteins that are involved in vesicular transport between the trans-Golgi network and early/recycling endosomes. An interplay between the AP-1 complex and viral protein(s) has been described for several viral lifecycles. In the present study, we demonstrated that the ORF2i protein colocalizes and interacts with the AP-1 adaptor complex in HEV-producing or infected cells. We showed that silencing or drug-inhibition of the AP-1 complex prevents ORF2i protein localization in viral factories and reduces viral production in hepatocytes. Modeling of the ORF2i/AP-1 complex also revealed that the S domain of ORF2i likely interacts with the σ1 subunit of AP-1 complex. Hence, our study identified for the first time a host factor involved in addressing HEV proteins (i.e. ORF2i protein) to viral factories.


Assuntos
Complexo 1 de Proteínas Adaptadoras , Proteínas do Capsídeo , Vírus da Hepatite E , Vírus da Hepatite E/metabolismo , Vírus da Hepatite E/fisiologia , Vírus da Hepatite E/genética , Humanos , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Transporte Proteico , Proteínas Virais/metabolismo , Proteínas Virais/genética , Montagem de Vírus , Hepatite E/metabolismo , Hepatite E/virologia
3.
Surg Endosc ; 38(8): 4344-4352, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877319

RESUMO

INTRODUCTION AND HYPOTHESIS: Lateral suspension is an abdominal prosthetic surgical procedure used to correct apical prolapse. The procedure involves the placement of a T-shaped mesh on the anterior vaginal wall and on the isthmus or uterine cervix that is suspended laterally and posteriorly to the abdominal wall. Since its description in the late 90s, modifications of the technique have been described. So far, no consensus on the correct indications, safety, advantages, and disadvantages of this emerging procedure has been reached. METHODS: A modified Delphi process was used to build consensus within a group of 21 international surgeons who are experts in the performance of laparoscopic lateral suspension (LLS). The process was held with a first online round, where the experts expressed their level of agreement on 64 statements on indications, technical features, and other aspects of LLS. A subsequent re-discussion of statements where a threshold of agreement was not reached was held in presence. RESULTS: The Delphi process allowed the identification of several aspects of LLS that represented areas of agreement by the experts. The experts agreed that LLS is a safe and effective technique to correct apical and anterior prolapse. The experts highlighted several key technical aspects of the procedure, including clinical indications and surgical steps. CONCLUSIONS: This Delphi consensus provides valuable guidance and criteria for the use of LLS in the treatment of pelvic organ prolapse, based on expert opinion by large volume surgeons' experts in the performance of this innovative procedure.


Assuntos
Técnica Delphi , Laparoscopia , Prolapso de Órgão Pélvico , Telas Cirúrgicas , Humanos , Prolapso de Órgão Pélvico/cirurgia , Feminino , Laparoscopia/métodos , Procedimentos Cirúrgicos em Ginecologia/métodos , Consenso
4.
J Gynecol Obstet Hum Reprod ; 53(8): 102804, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797369

RESUMO

BACKGROUND: Outpatient surgery in gynaecology may offer advantages including cost reduction, patient convenience and hospital bed optimisation without compromising patient safety and satisfaction. With the continual rise in health costs since 2000, outpatient surgery could be a line of action to improve financial resource utilisation and a solution for continuing to treat patients during crises such as the coronavirus disease 2019 pandemic. OBJECTIVE: This systematic review provides an overview of the literature on minimally invasive outpatient hysterectomy for benign indications. METHOD: A focused systematic review of the medical literature between 2018 and 2022 on outpatient gynaecological surgery for a benign indication was conducted using the PubMed and Google Scholar search engines. We then narrowed our selection to articles that referred to hysterectomy. Successful same-day discharge (SDD) was defined as the patient's return home on the day of the procedure without an overnight stay. RESULTS: Fifteen articles that focused on minimally invasive surgery were included in this review. Most of the studies (n = 11) were conducted in the United States. Outpatient surgery had a mean success rate of 60 % and a mean readmission rate of 3 %. The main reasons for SDD failure were patient choice, failed voiding, the need for pain management, nausea or vomiting, or both and the late timing of surgery. SDD was not associated with more complications and readmissions compared with inpatient care. The three main attribute predictors of SDD were young age, early timing of surgery and short total operative time. Patient satisfaction with SDD was high in absolute terms and relative to satisfaction with hospitalisation. CONCLUSION: Minimally invasive outpatient hysterectomy for a benign indication is feasible and safe but is associated with a notable risk of failure. To increase the success rate of outpatient management, patients must be well selected and surgery pathways must be planned in advance. The implementation of enhanced recovery protocols may help promote outpatient hysterectomy for a benign indication.

5.
Front Microbiol ; 15: 1443183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39176276

RESUMO

Introduction: The COVID-19 pandemic caused by the SARS-CoV-2 virus has underscored the urgent necessity for the development of antiviral compounds that can effectively target coronaviruses. In this study, we present the first evidence of the antiviral efficacy of hyperforin, a major metabolite of St. John's wort, for which safety and bioavailability in humans have already been established. Methods: Antiviral assays were conducted in cell culture with four human coronaviruses: three of high virulence, SARS-CoV-2, SARS-CoV, and MERS-CoV, and one causing mild symptoms, HCoV-229E. The antiviral activity was also evaluated in human primary airway epithelial cells. To ascertain the viral step inhibited by hyperforin, time-of-addition assays were conducted. Subsequently, a combination assay of hyperforin with remdesivir was performed. Results: The results demonstrated that hyperforin exhibited notable antiviral activity against the four tested human coronaviruses, with IC50 values spanning from 0.24 to 2.55 µM. Kinetic studies indicated that the observed activity occur at a post-entry step, potentially during replication. The antiviral efficacy of hyperforin was additionally corroborated in human primary airway epithelial cells. The results demonstrated a reduction in both intracellular and extracellular SARS-CoV-2 viral RNA, confirming that hyperforin targeted the replication step. Finally, an additive antiviral effect on SARS-CoV-2 was observed when hyperforin was combined with remdesivir. Discussion: In conclusion, hyperforin has been identified as a novel pan-coronavirus inhibitor with activity in human primary airway epithelial cells, a preclinical model for coronaviruses. These findings collectively suggest that hyperforin has potential as a candidate antiviral agent against current and future human coronaviruses.

6.
Eur J Med Chem ; 276: 116707, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39068863

RESUMO

The 3CL protease (3CLpro, Mpro) plays a key role in the replication of the SARS-CoV-2 and was validated as therapeutic target by the development and approval of specific antiviral drugs (nirmatrelvir, ensitrelvir), inhibitors of this protease. Moreover, its high conservation within the coronavirus family renders it an attractive therapeutic target for the development of anti-coronavirus compounds with broad spectrum activity to control COVID-19 and future coronavirus diseases. Here we report on the design, synthesis and structure-activity relationships of a new series of small covalent reversible inhibitors of the SARS-CoV-2 3CLpro. As elucidated thanks to the X-Ray structure of some inhibitors with the 3CLpro, the mode of inhibition involves acylation of the thiol of the catalytic cysteine. The synthesis of 60 analogs led to the identification of compound 56 that inhibits the SARS-CoV-2 3CLpro with high potency (IC50 = 70 nM) and displays antiviral activity in cells (EC50 = 3.1 µM). Notably, compound 56 inhibits the 3CLpro of three other human coronaviruses and exhibit a good selectivity against two human cysteine proteases. These results demonstrate the potential of this electrophilic N-acylbenzimidazole series as a basis for further optimization.


Assuntos
Antivirais , Benzimidazóis , Proteases 3C de Coronavírus , SARS-CoV-2 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Relação Estrutura-Atividade , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Humanos , Benzimidazóis/farmacologia , Benzimidazóis/química , Benzimidazóis/síntese química , Cisteína Endopeptidases/metabolismo , Acilação , Cisteína/química , Cisteína/farmacologia , Estrutura Molecular , Relação Dose-Resposta a Droga , Inibidores de Proteases/farmacologia , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Modelos Moleculares , Desenho de Fármacos , Cristalografia por Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa