Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 577(7791): 502-508, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816625

RESUMO

In conventional intercalation cathodes, alkali metal ions can move in and out of a layered material with the charge being compensated for by reversible reduction and oxidation of the transition metal ions. If the cathode material used in a lithium-ion or sodium-ion battery is alkali-rich, this can increase the battery's energy density by storing charge on the oxide and the transition metal ions, rather than on the transition metal alone1-10. There is a high voltage associated with oxidation of O2- during the first charge, but this is not recovered on discharge, resulting in reduced energy density11. Displacement of transition metal ions into the alkali metal layers has been proposed to explain the first-cycle voltage loss (hysteresis)9,12-16. By comparing two closely related intercalation cathodes, Na0.75[Li0.25Mn0.75]O2 and Na0.6[Li0.2Mn0.8]O2, here we show that the first-cycle voltage hysteresis is determined by the superstructure in the cathode, specifically the local ordering of lithium and transition metal ions in the transition metal layers. The honeycomb superstructure of Na0.75[Li0.25Mn0.75]O2, present in almost all oxygen-redox compounds, is lost on charging, driven in part by formation of molecular O2 inside the solid. The O2 molecules are cleaved on discharge, reforming O2-, but the manganese ions have migrated within the plane, changing the coordination around O2- and lowering the voltage on discharge. The ribbon superstructure in Na0.6[Li0.2Mn0.8]O2 inhibits manganese disorder and hence O2 formation, suppressing hysteresis and promoting stable electron holes on O2- that are revealed by X-ray absorption spectroscopy. The results show that voltage hysteresis can be avoided in oxygen-redox cathodes by forming materials with a ribbon superstructure in the transition metal layers that suppresses migration of the transition metal.

2.
J Am Chem Soc ; 138(35): 11211-8, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27498756

RESUMO

Conventional intercalation cathodes for lithium batteries store charge in redox reactions associated with the transition metal cations, e.g., Mn(3+/4+) in LiMn2O4, and this limits the energy storage of Li-ion batteries. Compounds such as Li[Li0.2Ni0.2Mn0.6]O2 exhibit a capacity to store charge in excess of the transition metal redox reactions. The additional capacity occurs at and above 4.5 V versus Li(+)/Li. The capacity at 4.5 V is dominated by oxidation of the O(2-) anions accounting for ∼0.43 e(-)/formula unit, with an additional 0.06 e(-)/formula unit being associated with O loss from the lattice. In contrast, the capacity above 4.5 V is mainly O loss, ∼0.08 e(-)/formula. The O redox reaction involves the formation of localized hole states on O during charge, which are located on O coordinated by (Mn(4+)/Li(+)). The results have been obtained by combining operando electrochemical mass spec on (18)O labeled Li[Li0.2Ni0.2Mn0.6]O2 with XANES, soft X-ray spectroscopy, resonant inelastic X-ray spectroscopy, and Raman spectroscopy. Finally the general features of O redox are described with discussion about the role of comparatively ionic (less covalent) 3d metal-oxygen interaction on anion redox in lithium rich cathode materials.

3.
Commun Chem ; 3(1): 9, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36703401

RESUMO

Rechargeable sodium-ion batteries have recently attracted renewed interest as an alternative to Li-ion batteries for electric energy storage applications, because of the low cost and wide availability of sodium resources. Thus, the electrochemical energy storage community has been devoting increased attention to designing new cathode materials for sodium-ion batteries. Here we investigate P2- Na0.78Co1/2Mn1/3Ni1/6O2 as a cathode material for sodium ion batteries. The main focus is to understand the mechanism of the electrochemical performance of this material, especially differences observed in redox reactions at high potentials. Between 4.2 V and 4.5 V, the material delivers a reversible capacity which is studied in detail using advanced analytical techniques. In situ X-ray diffraction reveals the reversibility of the P2-type structure of the material. Combined soft X-ray absorption spectroscopy and resonant inelastic X-ray scattering demonstrates that Na deintercalation at high voltages is charge compensated by formation of localized electron holes on oxygen atoms.

4.
Nat Chem ; 10(3): 288-295, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29461536

RESUMO

The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li+-O(2p)-Li+ interactions). Na2/3[Mg0.28Mn0.72]O2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na2/3[Mg0.28Mn0.72]O2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg2+ remains in Na2/3[Mg0.28Mn0.72]O2, which stabilizes oxygen.

5.
Nat Chem ; 8(7): 684-91, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27325095

RESUMO

During the charging and discharging of lithium-ion-battery cathodes through the de- and reintercalation of lithium ions, electroneutrality is maintained by transition-metal redox chemistry, which limits the charge that can be stored. However, for some transition-metal oxides this limit can be broken and oxygen loss and/or oxygen redox reactions have been proposed to explain the phenomenon. We present operando mass spectrometry of (18)O-labelled Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2, which demonstrates that oxygen is extracted from the lattice on charging a Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2 cathode, although we detected no O2 evolution. Combined soft X-ray absorption spectroscopy, resonant inelastic X-ray scattering spectroscopy, X-ray absorption near edge structure spectroscopy and Raman spectroscopy demonstrates that, in addition to oxygen loss, Li(+) removal is charge compensated by the formation of localized electron holes on O atoms coordinated by Mn(4+) and Li(+) ions, which serve to promote the localization, and not the formation, of true O2(2-) (peroxide, O-O ~1.45 Å) species. The quantity of charge compensated by oxygen removal and by the formation of electron holes on the O atoms is estimated, and for the case described here the latter dominates.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa