Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(22): e202219024, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36935352

RESUMO

We report on a controllable and specific functionalisation route for graphene field-effect transistors (GFETs) for the recognition of small physiologically active molecules. Key element is the noncovalent functionalisation of the graphene surface with perylene bisimide (PBI) molecules directly on the growth substrate. This Functional Layer Transfer enables the homogeneous self-assembly of PBI molecules on graphene, onto which antibodies are subsequently immobilised. The sensor surface was characterised by atomic force microscopy, Raman spectroscopy and electrical measurements, showing superior performance over conventional functionalisation after transfer. Specific sensing of small molecules was realised by monitoring the electrical property changes of functionalised GFET devices upon the application of methamphetamine and cortisol. The concentration dependent electrical response of our sensors was determined down to a concentration of 300 ng ml-1 for methamphetamine.


Assuntos
Grafite , Grafite/química , Transistores Eletrônicos , Biomarcadores , Anticorpos , Microscopia de Força Atômica
2.
Chemistry ; 27(52): 13117-13122, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34357651

RESUMO

The development of an efficient method to patterning 2D MoS2 into a desired topographic structure is of particular importance to bridge the way towards the ultimate device. Herein, we demonstrate a patterning strategy by combining the electron beam lithography with the surface covalent functionalization. This strategy allows us to generate delicate MoS2 ribbon patterns with a minimum feature size of 2 µm in a high throughput rate. The patterned monolayer MoS2 domain consists of a spatially well-defined heterophase homojunction and alternately distributed surface characteristics, which holds great interest for further exploration of MoS2 based devices.

3.
Angew Chem Int Ed Engl ; 60(24): 13484-13492, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33768735

RESUMO

Covalent functionalization of two-dimensional molybdenum disulfide (2D MoS2 ) holds great promise in developing robust organic-MoS2 hybrid structures. Herein, for the first time, we demonstrate an approach to building up a bisfunctionalized MoS2 hybrid structure through successively reacting activated MoS2 with alkyl iodide and aryl diazonium salts. This approach can be utilized to modify both colloidal and substrate supported MoS2 nanosheets. We have discovered that compared to the adducts formed through the reactions of MoS2 with diazonium salts, those formed through the reactions of MoS2 with alkyl iodides display higher reactivity towards further reactions with electrophiles. We are convinced that our systematic study on the formation and reactivity of covalently functionalized MoS2 hybrids will provide some practical guidance on multi-angle tailoring of the properties of 2D MoS2 for various potential applications.

4.
Chemistry ; 26(29): 6535-6544, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32141636

RESUMO

Two-dimensional (2D) molybdenum disulfide (MoS2 ) holds great promise in electronic and optoelectronic applications owing to its unique structure and intriguing properties. The intrinsic defects such as sulfur vacancies (SVs) of MoS2 nanosheets are found to be detrimental to the device efficiency. To mitigate this problem, functionalization of 2D MoS2 using thiols has emerged as one of the key strategies for engineering defects. Herein, we demonstrate an approach to controllably engineer the SVs of chemically exfoliated MoS2 nanosheets using a series of substituted thiophenols in solution. The degree of functionalization can be tuned by varying the electron-withdrawing strength of substituents in thiophenols. We find that the intensity of 2LA(M) peak normalized to A1g peak strongly correlates to the degree of functionalization. Our results provide a spectroscopic indicator to monitor and quantify the defect engineering process. This method of MoS2 defect functionalization in solution also benefits the further exploration of defect-free MoS2 for a wide range of applications.

5.
Nanotechnology ; 31(37): 375601, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32498057

RESUMO

The synthesis of transition metal dichalcogenides (TMDs) has been a primary focus for 2D nanomaterial research over the last 10 years, however, only a small fraction of this research has been concentrated on transition metal ditellurides. In particular, nanoscale platinum ditelluride (PtTe2) has rarely been investigated, despite its potential applications in catalysis, photonics and spintronics. Of the reports published, the majority examine mechanically-exfoliated flakes from chemical vapor transport (CVT) grown crystals. This method produces high quality-crystals, ideal for fundamental studies. However, it is very resource intensive and difficult to scale up meaning there are significant obstacles to implementation in large-scale applications. In this report, the synthesis of thin films of PtTe2 through the reaction of solid-phase precursor films is described. This offers a production method for large-area, thickness-controlled PtTe2, potentially suitable for a number of applications. These polycrystalline PtTe2 films were grown at temperatures as low as 450 °C, significantly below the typical temperatures used in the CVT synthesis methods. Adjusting the growth parameters allowed the surface coverage and morphology of the films to be controlled. Analysis with scanning electron- and scanning tunneling microscopy indicated grain sizes of above 1 µm could be achieved, comparing favorably with typical values of ∼50 nm for polycrystalline films. To investigate their potential applicability, these films were examined as electrocatalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The films showed promising catalytic behavior, however, the PtTe2 was found to undergo chemical transformation to a substoichiometric chalcogenide compound under ORR conditions. This study shows while PtTe2 is stable and highly useful for in HER, this property does not apply to ORR, which undergoes a fundamentally different mechanism. This study broadens our knowledge on the electrocatalysis of TMDs.

6.
Sensors (Basel) ; 20(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503202

RESUMO

Humidity sensing is fundamental in some applications, as humidity can be a strong interferent in the detection of analytes under environmental conditions. Ideally, materials sensitive or insensitive towards humidity are strongly needed for the sensors used in the first or second case, respectively. We present here the sensing properties of multi-layered graphene (MLG) upon exposure to different levels of relative humidity. We synthesize MLG by chemical vapor deposition, as shown by Raman spectroscopy, Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Through an MLG-based resistor, we show that MLG is scarcely sensitive to humidity in the range 30%-70%, determining current variations in the range of 0.005%/%relative humidity (RH) well below the variation induced by other analytes. These findings, due to the morphological properties of MLG, suggest that defective MLG is the ideal sensing material to implement in gas sensors operating both at room temperature and humid conditions.

7.
Angew Chem Int Ed Engl ; 59(33): 13785-13792, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32449582

RESUMO

In recent years, various functionalization strategies for transition-metal dichalcogenides have been explored to tailor the properties of materials and to provide anchor points for the fabrication of hybrid structures. Herein, new insights into the role of the surfactant in functionalization reactions are described. Using the spontaneous reaction of WS2 with chloroauric acid as a model reaction, the regioselective formation of gold nanoparticles on WS2 is shown to be heavily dependent on the surfactant employed. A simple model is developed to explain the role of the chosen surfactant in this heterogeneous functionalization reaction. The surfactant coverage is identified as the crucial element that governs the dominant reaction pathway and therefore can severely alter the reaction outcome. This study shows the general importance of the surfactant choice and how detrimental or beneficial a certain surfactant can be to the desired functionalization.

8.
Small ; 15(34): e1902728, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31276302

RESUMO

Carrier interactions in 2D nanostructures are of central importance not only in condensed-matter physics but also for a wide range of optoelectronic and photonic applications. Here, new insights into the behavior of photoinduced carriers in layered platinum diselenide (PtSe2 ) through ultrafast time-resolved pump-probe and nonlinear optical measurements are presented. The measurements reveal the temporal evolution of carrier relaxation, chemical potential and bandgap renormalization in PtSe2 . These results imply that few-layer PtSe2 has a semiconductor-like carrier relaxation instead of a metal-like one. The relaxation follows a triple-exponential decay process and exhibits thickness-dependent relaxation times. This occurs along with a band-filling effect, which can be controlled based on the number of layers and may be applied in saturable absorption for generating ultrafast laser pulses. The findings may provide means to study many-body physics in 2D materials as well as potentially leading to applications in the field of optoelectronics and ultrafast photonics.

9.
Nano Lett ; 18(3): 1794-1800, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29461845

RESUMO

Platinum diselenide (PtSe2) is a group-10 transition metal dichalcogenide (TMD) that has unique electronic properties, in particular a semimetal-to-semiconductor transition when going from bulk to monolayer form. We report on vertical hybrid Schottky barrier diodes (SBDs) of two-dimensional (2D) PtSe2 thin films on crystalline n-type silicon. The diodes have been fabricated by transferring large-scale layered PtSe2 films, synthesized by thermally assisted conversion of predeposited Pt films at back-end-of-the-line CMOS compatible temperatures, onto SiO2/Si substrates. The diodes exhibit obvious rectifying behavior with a photoresponse under illumination. Spectral response analysis reveals a maximum responsivity of 490 mA/W at photon energies above the Si bandgap and relatively weak responsivity, in the range of 0.1-1.5 mA/W, at photon energies below the Si bandgap. In particular, the photoresponsivity of PtSe2 in infrared allows PtSe2 to be utilized as an absorber of infrared light with tunable sensitivity. The results of our study indicate that PtSe2 is a promising option for the development of infrared absorbers and detectors for optoelectronics applications with low-temperature processing conditions.

10.
Nano Lett ; 18(6): 3738-3745, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29768010

RESUMO

Two-dimensional (2D) layered materials are ideal for micro- and nanoelectromechanical systems (MEMS/NEMS) due to their ultimate thinness. Platinum diselenide (PtSe2), an exciting and unexplored 2D transition metal dichalcogenide material, is particularly interesting because its low temperature growth process is scalable and compatible with silicon technology. Here, we report the potential of thin PtSe2 films as electromechanical piezoresistive sensors. All experiments have been conducted with semimetallic PtSe2 films grown by thermally assisted conversion of platinum at a complementary metal-oxide-semiconductor (CMOS)-compatible temperature of 400 °C. We report high negative gauge factors of up to -85 obtained experimentally from PtSe2 strain gauges in a bending cantilever beam setup. Integrated NEMS piezoresistive pressure sensors with freestanding PMMA/PtSe2 membranes confirm the negative gauge factor and exhibit very high sensitivity, outperforming previously reported values by orders of magnitude. We employ density functional theory calculations to understand the origin of the measured negative gauge factor. Our results suggest PtSe2 as a very promising candidate for future NEMS applications, including integration into CMOS production lines.

11.
Nanotechnology ; 29(32): 325204, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-29781804

RESUMO

The optical response of metallic nanohelices is mainly governed by a longitudinal localised surface plasmon resonance (LSPR) which arises due to the helical anisotropy of the system. Up to now, experimental studies have predominantly addressed the far-field response, despite the fact that the LSPR being of broad interest for converting incoming light into strongly enhanced (chiral) optical near-fields. Here, we demonstrate the control and spatial reproducibility of the plasmon-induced electromagnetic near-field around metallic nanohelices via surface-enhanced Raman scattering. We discuss how the near-field intensity of these nanostructures can be custom-tailored through both the nanoscaled helical structure and the electronic properties of the constituting metals. Our experiments, which employ graphene as an accurate probing material, are in quantitative agreement with corresponding numerical simulations. The findings demonstrate metallic nanohelices as reference nanostructured surfaces able to provide and fine-tune optical fields for fundamental studies as well as sensing or (chiro-optical) imaging applications.

12.
Small ; 13(34)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28692755

RESUMO

2D metal chalcogenide (MC) nanosheets (NS) have displayed high capacities as lithium-ion battery (LiB) anodes. Nevertheless, their complicated synthesis routes coupled with low electronic conductivity greatly limit them as promising LiB electrode material. Here, this work reports a facile single-walled carbon nanotube (SWCNT) percolating strategy for efficiently maximizing the electrochemical performances of gallium chalcogenide (GaX, X = S or Se). Multiscaled flexible GaX NS/SWCNT heterostructures with abundant voids for Li+ diffusion are fabricated by embedding the liquid-exfoliated GaX NS matrix within a SWCNT-percolated network; the latter improves the electron transport and ion diffusion kinetics as well as maintains the mechanical flexibility. Consequently, high capacities (i.e., 838 mAh g-1 per gallium (II) sulfide (GaS) NS/SWCNT mass and 1107 mAh g-1 per GaS mass; the latter is close to the theoretical value) and good rate capabilities are achieved, which can be majorly attributed to the alloying processes of disordered Ga formed after the first irreversible GaX conversion reaction, as monitored by in situ X-ray diffraction. The presented approach, colloidal solution processing of SWCNT and liquid-exfoliated MC NS to produce flexible paper-based electrode, could be generalized for wearable energy storage devices with promising performances.

13.
Nano Lett ; 16(8): 4754-62, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27438189

RESUMO

Vertically aligned nanowires (NWs) of single crystal semiconductors have attracted a great deal of interest in the past few years. They have strong potential to be used in device structures with high density and with intriguing optoelectronic properties. However, fabricating such nanowire structures using organic semiconducting materials remains technically challenging. Here we report a simple procedure for the synthesis of crystalline 9,10-bis(phenylethynyl) anthracene (BPEA) NWs on a graphene surface utilizing a solution-phase van der Waals (vdW) epitaxial strategy. The wires are found to grow preferentially in a vertical direction on the surface of graphene. Structural characterization and first-principles ab initio simulations were performed to investigate the epitaxial growth and the molecular orientation of the BPEA molecules on graphene was studied, revealing the role of interactions at the graphene-BPEA interface in determining the molecular orientation. These free-standing NWs showed not only efficient optical waveguiding with low loss along the NW but also confinement of light between the two end facets of the NW forming a microcavity Fabry-Pérot resonator. From an analysis of the optical dispersion within such NW microcavities, we observed strong slowing of the waveguided light with a group velocity reduced to one-tenth the speed of light. Applications of the vertical single-crystalline organic NWs grown on graphene will benefit from a combination of the unique electronic properties and flexibility of graphene and the tunable optical and electronic properties of organic NWs. Therefore, these vertical organic NW arrays on graphene offer the potential for realizing future on-chip light sources.

14.
Opt Lett ; 41(17): 3936-9, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27607941

RESUMO

Both the nonlinear absorption and nonlinear refraction properties of WS2 and WSe2 semiconductor films have been characterized by using Z-scan technique with femtosecond pulses at the wavelength of 1040 nm. It is found that these films have two-photon absorption response with the nonlinear absorption coefficient of ∼103 cm GW-1, and a dispersion of nonlinear refractive index in the WS2 films that translated from positive in the monolayer to negative in bulk materials.

15.
Nano Lett ; 15(2): 857-63, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25539448

RESUMO

We have used elastomeric stamps with periodically varying adhesive properties to introduce structure and print folded graphene films. The structure of the induced folds is investigated with scanning probe techniques, high-resolution electron-microscopy, and tip-enhanced Raman spectroscopy. Furthermore, a finite element model is developed to show the fold formation process. Terahertz spectroscopy reveals induced anisotropy of carrier mobility along, and perpendicular to, the graphene folds. Graphene fold printing is a new technique which allows for significant modification of the properties of 2D materials without damaging or chemically modifying them.

16.
Nano Lett ; 15(8): 5307-13, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26154305

RESUMO

We report subnanometer modification enabled by an ultrafine helium ion beam. By adjusting ion dose and the beam profile, structural defects were controllably introduced in a few-layer molybdenum disulfide (MoS2) sample and its stoichiometry was modified by preferential sputtering of sulfur at a few-nanometer scale. Localized tuning of the resistivity of MoS2 was demonstrated and semiconducting, metallic-like, or insulating material was obtained by irradiation with different doses of He(+). Amorphous MoSx with metallic behavior has been demonstrated for the first time. Fabrication of MoS2 nanostructures with 7 nm dimensions and pristine crystal structure was also achieved. The damage at the edges of these nanostructures was typically confined to within 1 nm. Nanoribbons with widths as small as 1 nm were reproducibly fabricated. This nanoscale modification technique is a generalized approach that can be applied to various two-dimensional (2D) materials to produce a new range of 2D metamaterials.

17.
Angew Chem Int Ed Engl ; 55(19): 5803-8, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27038093

RESUMO

Two-dimensional layered transition metal dichalcogenides (TMDs) have attracted great interest owing to their unique properties and a wide array of potential applications. However, due to their inert nature, pristine TMDs are very challenging to functionalize. We demonstrate a general route to functionalize exfoliated 2H-MoS2 with cysteine. Critically, MoS2 was found to be facilitating the oxidation of the thiol cysteine to the disulfide cystine during functionalization. The resulting cystine was physisorbed on MoS2 rather than coordinated as a thiol (cysteine) filling S-vacancies in the 2H-MoS2 surface, as originally conceived. These observations were found to be true for other organic thiols and indeed other TMDs. Our findings suggest that functionalization of two-dimensional MoS2 using organic thiols may not yield covalently or datively tethered functionalities, rather, in this instance, they yield physisorbed disulfides that are easily removed.

18.
J Am Chem Soc ; 137(8): 2800-3, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25679322

RESUMO

A highly efficient surface plasmon resonance (SPR) immunosensor is described using a functionalized single graphene layer on a thin gold film. The aim of this approach was two-fold: first, to amplify the SPR signal by growing graphene through chemical vapor deposition and, second, to control the immobilization of biotinylated cholera toxin antigen on copper coordinated nitrilotriacetic acid (NTA) using graphene as an ultrathin layer. The NTA groups were attached to graphene via pyrene derivatives implying π-π interactions. With this setup, an immunosensor for the specific antibody anticholera toxin with a detection limit of 4 pg mL(-1) was obtained. In parallel, NTA polypyrrole films of different thicknesses were electrogenerated on the gold sensing platform where the optimal electropolymerization conditions were determined. For this optimized polypyrrole-NTA setup, the simple presence of a graphene layer between the gold and polymer film led to a significant increase of the SPR signal.


Assuntos
Grafite/química , Limite de Detecção , Ressonância de Plasmônio de Superfície/métodos , Animais , Anticorpos Imobilizados/análise , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Biotinilação , Toxina da Cólera/imunologia , Ouro/química , Volatilização
19.
Nat Mater ; 13(6): 624-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24747780

RESUMO

To progress from the laboratory to commercial applications, it will be necessary to develop industrially scalable methods to produce large quantities of defect-free graphene. Here we show that high-shear mixing of graphite in suitable stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets. X-ray photoelectron spectroscopy and Raman spectroscopy show the exfoliated flakes to be unoxidized and free of basal-plane defects. We have developed a simple model that shows exfoliation to occur once the local shear rate exceeds 10(4) s(-1). By fully characterizing the scaling behaviour of the graphene production rate, we show that exfoliation can be achieved in liquid volumes from hundreds of millilitres up to hundreds of litres and beyond. The graphene produced by this method performs well in applications from composites to conductive coatings. This method can be applied to exfoliate BN, MoS2 and a range of other layered crystals.

20.
Angew Chem Int Ed Engl ; 54(9): 2638-42, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25612324

RESUMO

Layered two-dimensional (2D) inorganic transition-metal dichalchogenides (TMDs) have attracted great interest as a result of their potential application in optoelectronics, catalysis, and medicine. However, methods to functionalize and process such 2D TMDs remain scarce. We have established a facile route towards functionalized layered MoS2 . We found that the reaction of liquid-exfoliated 2D MoS2 , with M(OAc)2 salts (M=Ni, Cu, Zn; OAc=acetate) yielded functionalized MoS2 -M(OAc)2 materials. Importantly, this method furnished the 2H-polytype of MoS2 which is a semiconductor. X-ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT-IR), and thermogravimetric analysis (TGA) provide strong evidence for the coordination of MoS2 surface sulfur atoms to the M(OAc)2 salt. Interestingly, functionalization of 2H-MoS2 allows for its dispersion/processing in more conventional laboratory solvents.


Assuntos
Deutério/química , Dissulfetos/química , Molibdênio/química , Acetatos/química , Metais Pesados/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa