Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120569, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484594

RESUMO

Global land resources are over-exploited and natural habitats are declining, often driven by expanding livestock production. In Ireland, pastureland for grazing cattle and sheep account for circa 60% of terrestrial land use. The agriculture, forestry and other land use sector (AFOLU) is responsible for 44% of national greenhouse gas (GHG) emissions. A new Grassland Animal response Model (GLAM) was developed to relate livestock-cohort grass and feed requirements to farm-grassland system areas, enhancing environmental assessment of prospective AFOLU configurations. Although land conversion targets are often well-defined, they tend to lack a clear definition of where land sparing can occur. Through analyses of 10 scenarios of milk and beef production and management strategies, we found that displacing beef cows with dairy cows can increase national protein output while sparing up to 0.75 million ha (18%) of grassland (albeit with a minor increase in overseas land requirement for additional concentrate feed). Reducing slaughter age, increasing exports of male dairy calves and increasing grassland use efficiency on beef farms each achieved between 0.19 and 0.32 million ha of land sparing. Sexed semen to achieve more favourable male-female birth ratios had a minor impact. GHG emissions, ammonia emissions and nutrient leaching were only reduced substantially when overall cattle numbers declined, confirming the need for cattle reductions to achieve environmental objectives. Nonetheless, application of GLAM shows potential for improved grass and cattle management to spare good quality land suitable for productive forestry and wetland restoration. This change is urgently needed to generate scalable carbon dioxide removals from the land sector in Ireland, and globally.


Assuntos
Efeito Estufa , Gases de Efeito Estufa , Humanos , Bovinos , Animais , Feminino , Masculino , Ovinos , Estudos Prospectivos , Meio Ambiente , Agricultura , Indústria de Laticínios
2.
J Environ Manage ; 264: 110523, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250923

RESUMO

In Ireland, agriculture accounts for 33% of national greenhouse gas (GHG) emissions. Ireland faces significant challenges in terms of emissions reduction and is well off course in terms of meeting binding European Union targets. Flexibility mechanisms will allow Ireland to offset 5.6% of its commitment via sequestration in biomass and soils and land use change. Agricultural emissions in Ireland are largely driven by livestock production. As such, the purpose of this research is to estimate the net GHG emission benefit resulting from a land use change with forest replacing livestock systems (dairy, beef cattle and sheep). We estimate the total carbon sequestration in biomass and harvested wood products, along with the total emissions avoided from each livestock system on a per hectare basis. In addition, the paper compares the social cost of carbon to the average income per hectare of each livestock system. Finally, a hypothetical national planting scenario is modelled using plausible planting rates. Results indicate that the greatest carbon benefit is achieved when forest replaces dairy production. This is due to high emissions per hectare from dairy systems, and greater sequestration potential in higher-yielding forests planted on better quality soils associated with dairy production. The inclusion of harvested wood products in subsequent rotations has the potential to enhance GHG mitigation and offset terrestrial carbon loss. A hypothetical national planting scenario, afforesting 100,000 ha substituting dairy, beef cattle and sheep livestock systems could abate 13.91 Mt CO2e after 10 years, and 150.14 Mt CO2e (unthinned plantations) or 125.89 Mt CO2e (thinned plantations) over the course of the rotation. These results highlight the critical role for forest land use change in meeting the urgent need to tackle rising agricultural emissions.


Assuntos
Sequestro de Carbono , Gases de Efeito Estufa , Animais , Carbono , Bovinos , Efeito Estufa , Irlanda , Gado , Ovinos
3.
J Am Chem Soc ; 141(9): 3934-3939, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30767518

RESUMO

The main aim of origins of life research is to find a plausible sequence of transitions from prebiotic chemistry to nascent biology. In this context, understanding how and when phospholipid membranes appeared on early Earth is critical to elucidating the prebiotic pathways that led to the emergence of primitive cells. Here we show that exposing glycerol-2-phosphate to acylating agents leads to the formation of a library of acylglycerol-phosphates. Medium-chain acylglycerol-phosphates were found to self-assemble into vesicles stable across a wide range of conditions and capable of retaining mono- and oligonucleotides. Starting with a mixture of activated carboxylic acids of different lengths, iterative cycling of acylation and hydrolysis steps allowed for the selection of longer-chain acylglycerol-phosphates. Our results suggest that a selection pathway based on energy-dissipative cycling could have driven the selective synthesis of phospholipids on early Earth.

4.
J Org Chem ; 79(8): 3311-26, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24666354

RESUMO

Synthesis of partially 2'/3'-O-acetylated oligoribonucleotides has been accomplished by using a 2'/3'-O-acetyl orthogonal protecting group strategy in which non-nucleophilic strong-base (DBU) labile nucleobase protecting groups and a UV-light cleavable linker were used. Strong-base stability of the photolabile linker allowed on-column nucleobase and phosphate deprotection, followed by a mild cleavage of the acetylated oligonucleotides from the solid support with UV light. Two 17nt oligonucleotides, which were synthesized possessing one specific internal 2'- or 3'-acetyl group, were used as synthetic standards in a recent report from this laboratory detailing the prebiotically plausible ligation of RNA oligonucleotides. In order to further investigate the effect of 2'/3'-O-acetyl groups on the stability of RNA duplex structure, two complementary bis-acetylated RNA oligonucleotides were also expediently obtained with the newly developed protocols. UV melting curves of 2'-O-acetylated RNA duplexes showed a consistent ~3.1 °C decrease in Tm per 2'-O-acetyl group.


Assuntos
Oligorribonucleotídeos/química , Oligorribonucleotídeos/síntese química , RNA/química , RNA/síntese química , Acetilação , Técnicas de Síntese em Fase Sólida
5.
J Immunother Cancer ; 9(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341132

RESUMO

BACKGROUND: Intratumoral injection of cyclic dinucleotide (CDN) agonists of the stimulator of interferon genes (STING) pathway engages innate immune activation and priming of adaptive immune effectors to foster local and distal tumor clearance. Despite proven therapeutic efficacy in preclinical models, a thorough understanding of how CDNs reprogram suppressive myeloid stroma in mouse and man is lacking. METHODS: Here, we perform deep transcript-level and protein-level profiling of myeloid-derived suppressor cells and M2 macrophages following stimulation with CDNs of ascending potency. Additionally, we leverage orthotopic Kras+/G12DTP53+/R172HPdx1-Cre (KPC) derived models of pancreatic adenocarcinoma (PDAC) to determine the capacity for locally administered CDNs to sensitize PDAC to immune checkpoint blockade. We use bioluminescent in vivo imaging and 30-parameter flow cytometry to profile growth kinetics and remodeling of the tumor stroma post-therapy. RESULTS: Highly potent synthetic STING agonists repolarize suppressive myeloid populations of human and murine origin in part through inhibition of Myc signaling, metabolic modulation, and antagonism of cell cycle. Surprisingly, high-potency synthetic agonists engage qualitatively unique pathways as compared with natural CDNs. Consistent with our mechanistic observations, we find that intratumoral injection of the highest activity STING agonist, IACS-8803, into orthotopic pancreatic adenocarcinoma lesions unmasks sensitivity to checkpoint blockade immunotherapy. Dimensionality reduction analyses of high parameter flow cytometry data reveals substantial contributions of both myeloid repolarization and T cell activation underlying the in vivo therapeutic benefit of this approach. CONCLUSIONS: This study defines the molecular basis of STING-mediated myeloid reprogramming, revealing previously unappreciated and qualitatively unique pathways engaged by CDNs of ascending potency during functional repolarization. Furthermore, we demonstrate the potential for high potency CDNs to overcome immunotherapy resistance in an orthotopic, multifocal model of PDAC.


Assuntos
Imunoterapia/métodos , Proteínas de Membrana/uso terapêutico , Células Supressoras Mieloides/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Humanos , Masculino , Proteínas de Membrana/farmacologia , Camundongos
6.
J Org Chem ; 73(16): 6429-32, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18642872

RESUMO

A catalytic quantity of ZrCl 4 (20 mol %) was found to be an efficient catalyst for the one-pot esterification and deprotection of (5 S,6 R)-5,6-diacetoxyoct-7-enoic acid in good yields (44-62%) with a lactone formed as a minor byproduct. ZrCl 4 (10-20 mol %) was also sufficient to deprotect 1,3-dioxalane, bis-TBDMS ethers, and diacetate functional groups in excellent yields of up to 93%. ZrCl 4 (1-10 mol %) also promoted diol protection as the acetonide in 90% yield and acted as a trans-esterification catalyst for a range of esters.

7.
Cancer Discov ; 8(9): 1069-1086, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30115704

RESUMO

Immune checkpoint blockade is able to induce durable responses across multiple types of cancer, which has enabled the oncology community to begin to envision potentially curative therapeutic approaches. However, the remarkable responses to immunotherapies are currently limited to a minority of patients and indications, highlighting the need for more effective and novel approaches. Indeed, an extraordinary amount of preclinical and clinical investigation is exploring the therapeutic potential of negative and positive costimulatory molecules. Insights into the underlying biological mechanisms and functions of these molecules have, however, lagged significantly behind. Such understanding will be essential for the rational design of next-generation immunotherapies. Here, we review the current state of our understanding of T-cell costimulatory mechanisms and checkpoint blockade, primarily of CTLA4 and PD-1, and highlight conceptual gaps in knowledge.Significance: This review provides an overview of immune checkpoint blockade therapy from a basic biology and immunologic perspective for the cancer research community. Cancer Discov; 8(9); 1069-86. ©2018 AACR.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacologia , Antígeno CTLA-4/antagonistas & inibidores , Ensaios Clínicos como Assunto , Humanos , Ativação Linfocitária , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/imunologia
8.
Nat Chem ; 7(4): 301-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25803468

RESUMO

A minimal cell can be thought of as comprising informational, compartment-forming and metabolic subsystems. To imagine the abiotic assembly of such an overall system, however, places great demands on hypothetical prebiotic chemistry. The perceived differences and incompatibilities between these subsystems have led to the widely held assumption that one or other subsystem must have preceded the others. Here we experimentally investigate the validity of this assumption by examining the assembly of various biomolecular building blocks from prebiotically plausible intermediates and one-carbon feedstock molecules. We show that precursors of ribonucleotides, amino acids and lipids can all be derived by the reductive homologation of hydrogen cyanide and some of its derivatives, and thus that all the cellular subsystems could have arisen simultaneously through common chemistry. The key reaction steps are driven by ultraviolet light, use hydrogen sulfide as the reductant and can be accelerated by Cu(I)-Cu(II) photoredox cycling.


Assuntos
Cianetos/metabolismo , Lipídeos/química , Proteínas/química , RNA/química , Sulfitos/metabolismo , Cianetos/química , Sulfitos/química
9.
Nat Chem ; 5(5): 383-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23609088

RESUMO

The recent synthesis of pyrimidine ribonucleoside-2',3'-cyclic phosphates under prebiotically plausible conditions has strengthened the case for the involvement of ribonucleic acid (RNA) at an early stage in the origin of life. However, a prebiotic conversion of these weakly activated monomers, and their purine counterparts, to the 3',5'-linked RNA polymers of extant biochemistry has been lacking (previous attempts led only to short oligomers with mixed linkages). Here we show that the 2'-hydroxyl group of oligoribonucleotide-3'-phosphates can be chemoselectively acetylated in water under prebiotically credible conditions, which allows rapid and efficient template-directed ligation. The 2'-O-acetyl group at the ligation junction of the product RNA strand can be removed under conditions that leave the internucleotide bonds intact. Remarkably, acetylation of mixed oligomers that possess either 2'- or 3'-terminal phosphates is selective for the 2'-hydroxyl group of the latter. This newly discovered chemistry thus suggests a prebiotic route from ribonucleoside-2',3'-cyclic phosphates to predominantly 3',5'-linked RNA via partially 2'-O-acetylated RNA.


Assuntos
Prebióticos , RNA/química , Acetilação , Biopolímeros/química , Ressonância Magnética Nuclear Biomolecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa