Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 105(2): 239-49, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19777583

RESUMO

Apolipoprotein A 1 Milano (ApoA-1M), the protein component of a high-density lipoprotein (HDL) mimic with promising potential for reduction of atherosclerotic plaque, is produced at large scale by expression in E. coli. Significant difficulty with clearance of host cell proteins (HCPs) was experienced in the original manufacturing process despite a lengthy downstream purification train. Analysis of purified protein solutions and intermediate process samples led to identification of several major HCPs co-purifying with the product and a bacterial protease potentially causing a specific truncation of ApoA-1M found in the final product. Deletion of these genes from the original host strain succeeded in substantially reducing the levels of HCPs and the truncated species without adversely affecting the overall fermentation productivity, contributing to a much more efficient and robust new manufacturing process.


Assuntos
Apolipoproteína A-I/isolamento & purificação , Escherichia coli/genética , Proteínas Recombinantes/isolamento & purificação , Sequência de Aminoácidos , Apolipoproteína A-I/química , Apolipoproteína A-I/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Deleção de Genes , Expressão Gênica , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Solubilidade
2.
MAbs ; 11(1): 1-12, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30303443

RESUMO

Amino acid sequence variation in protein therapeutics requires close monitoring during cell line and cell culture process development. A cross-functional team of Pfizer colleagues from the Analytical and Bioprocess Development departments worked closely together for over 6 years to formulate and communicate a practical, reliable sequence variant (SV) testing strategy with state-of-the-art techniques that did not necessitate more resources or lengthen project timelines. The final Pfizer SV screening strategy relies on next-generation sequencing (NGS) and amino acid analysis (AAA) as frontline techniques to identify mammalian cell clones with genetic mutations and recognize cell culture process media/feed conditions that induce misincorporations, respectively. Mass spectrometry (MS)-based techniques had previously been used to monitor secreted therapeutic products for SVs, but we found NGS and AAA to be equally informative, faster, less cumbersome screening approaches. MS resources could then be used for other purposes, such as the in-depth characterization of product quality in the final stages of commercial-ready cell line and culture process development. Once an industry-wide challenge, sequence variation is now routinely monitored and controlled at Pfizer (and other biopharmaceutical companies) through increased awareness, dedicated cross-line efforts, smart comprehensive strategies, and advances in instrumentation/software, resulting in even higher product quality standards for biopharmaceutical products.


Assuntos
Variação Genética , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Animais , Ensaios de Triagem em Larga Escala/métodos , Humanos
3.
AAPS J ; 18(6): 1562-1575, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27604766

RESUMO

Trumenba (bivalent rLP2086) is a vaccine licensed for the prevention of meningococcal meningitis disease caused by Neisseria meningitidis serogroup B (NmB) in individuals 10-25 years of age in the USA. The vaccine is composed of two factor H binding protein (fHbp) variants that were recombinantly expressed in Escherichia coli as native lipoproteins: rLP2086-A05 and rLP2086-B01. The vaccine was shown to induce potent bactericidal antibodies against a broad range of NmB isolates expressing fHbp that were different in sequence from the fHbp vaccine antigens. Here, we describe the characterization of the vaccine antigens including the elucidation of their structure which is characterized by two distinct motifs, the polypeptide domain and the N-terminal lipid moiety. In the vaccine formulation, the lipoproteins self-associate to form micelles driven by the hydrophobicity of the lipids and limited by the size of the folded polypeptides. The micelles help to increase the structural stability of the lipoproteins in the absence of bacterial cell walls. Analysis of the lipoproteins in Toll-like receptor (TLR) activation assays revealed their TLR2 agonist activity. This activity was lost with removal of the O-linked fatty acids, similar to removal of all lipids, demonstrating that this moiety plays an adjuvant role in immune activation. The thorough understanding of the structure and function of each moiety of the lipoproteins, as well as their relationship, lays the foundation for identifying critical parameters to guide vaccine development and manufacture.


Assuntos
Lipídeos/fisiologia , Lipoproteínas/fisiologia , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Células HEK293 , Humanos , Vacinas Meningocócicas/química , Vacinas Meningocócicas/imunologia , Estrutura Molecular , Processamento de Proteína Pós-Traducional
4.
J Chromatogr A ; 1217(2): 225-34, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19896672

RESUMO

Obtaining sufficient amounts of pure glycoprotein variants to characterize their structures is an important goal in both functional biology and the biotechnology industry. We have developed preparative HIC conditions that resolve glycoform variants on the basis of overall carbohydrate content for a recombinant transferrin-exendin-4 fusion protein. The fusion protein was expressed from the yeast Saccharomyces cerevisiae from high density fermentation and is post-translationally modified with mannose sugars through O-glycosidic linkages. Overall hydrophobic behavior appeared to be dominated by the N-terminal 39 amino acids from the exendin-4 and linker peptide sequences as compared to the less hydrophobic behavior of human transferrin alone. In addition, using LC techniques that measure total glycans released from the pure protein combined with new high resolution technologies using mass spectrometry, we have determined the locations and chain lengths of mannose residues on specific peptides derived from tryptic maps of the transferrin-exendin-4 protein. Though the protein is large (80,488kDa) and contains 78 possible serine and threonine residues as potential sites for sugar addition, mannosylation was observed on only two tryptic peptides located within the first 55 amino acids of the N-terminus. These glycopeptides were highly heterogeneous and contained between 1 and 10 mannose residues scattered among the various serine and threonine sites which were identified by electron transfer dissociation mass spectrometry. Glycan sequences from 1 to 6 linear mannose residues were detected, but mannose chain lengths of 3 or 4 were more common and formed 80% of the total oligosaccharides. This work introduces new technological capabilities for the purification and characterization of glycosylated variants of therapeutic recombinant proteins.


Assuntos
Cromatografia Líquida/métodos , Glicopeptídeos/química , Manose/química , Peptídeos/química , Proteínas Recombinantes de Fusão/química , Transferrina/química , Peçonhas/química , Sequência de Aminoácidos , Exenatida , Glicopeptídeos/genética , Glicopeptídeos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Manose/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Espectrometria de Massas em Tandem , Transferrina/genética , Transferrina/metabolismo , Ureia , Peçonhas/genética , Peçonhas/metabolismo
5.
Biotechnol Prog ; 25(2): 446-53, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19291803

RESUMO

We have shown how product associating E. coli host cell proteins (HCPs) OppA and DppA can be substantially separated from apolipoprotein A-I(Milano) (apo A-I(M)) using Butyl Sepharose hydrophobic interaction chromatography (HIC). This work illustrates the complex problems that frequently arise during development and scale-up of biopharmaceutical manufacturing processes. Product association of the HCPs is confirmed using co-immunoprecipitation and Western blotting techniques. Two-dimensional gel electrophoresis and mass spectrometry techniques are used to confirm the identity of OppA and DppA. In this example, clearance of these difficult to separate HCPs decreased significantly when the process was scaled to a 1.4 m diameter column. Laboratory-scale experimentation and trouble shooting identified several key parameters that could be further optimized to improve HCP clearance. The key parameters included resin loading, peak cut point on the ascending side, wash volume, and wash salt concentration. By implementing all of the process improvements that were identified, it was possible to obtain adequate HCP clearance so as to meet the final specification. Although it remains speculative, it is believed that viscosity effects may have contributed to the lower HCP clearance observed early in the manufacturing campaign.


Assuntos
Apolipoproteína A-I/isolamento & purificação , Proteínas de Transporte/isolamento & purificação , Cromatografia Líquida/métodos , Proteínas de Escherichia coli/isolamento & purificação , Microbiologia Industrial , Lipoproteínas/isolamento & purificação , Proteínas Periplásmicas de Ligação/isolamento & purificação , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa