Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Biol Chem ; 300(2): 105630, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199568

RESUMO

Sterile alpha and toll/interleukin receptor motif-containing 1 (SARM1) is a critical regulator of axon degeneration that acts through hydrolysis of NAD+ following injury. Recent work has defined the mechanisms underlying SARM1's catalytic activity and advanced our understanding of SARM1 function in axons, yet the role of SARM1 signaling in other compartments of neurons is still not well understood. Here, we show in cultured hippocampal neurons that endogenous SARM1 is present in axons, dendrites, and cell bodies and that direct activation of SARM1 by the neurotoxin Vacor causes not just axon degeneration, but degeneration of all neuronal compartments. In contrast to the axon degeneration pathway defined in dorsal root ganglia, SARM1-dependent hippocampal axon degeneration in vitro is not sensitive to inhibition of calpain proteases. Dendrite degeneration downstream of SARM1 in hippocampal neurons is dependent on calpain 2, a calpain protease isotype enriched in dendrites in this cell type. In summary, these data indicate SARM1 plays a critical role in neurodegeneration outside of axons and elucidates divergent pathways leading to degeneration in hippocampal axons and dendrites.


Assuntos
Proteínas do Domínio Armadillo , Proteínas do Citoesqueleto , Neurônios , Animais , Camundongos , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Calpaína/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dendritos/metabolismo , Neurônios/metabolismo , Transdução de Sinais
2.
Cell ; 138(1): 172-85, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19596243

RESUMO

The transcriptional control of CNS myelin gene expression is poorly understood. Here we identify gene model 98, which we have named myelin gene regulatory factor (MRF), as a transcriptional regulator required for CNS myelination. Within the CNS, MRF is specifically expressed by postmitotic oligodendrocytes. MRF is a nuclear protein containing an evolutionarily conserved DNA binding domain homologous to a yeast transcription factor. Knockdown of MRF in oligodendrocytes by RNA interference prevents expression of most CNS myelin genes; conversely, overexpression of MRF within cultured oligodendrocyte progenitors or the chick spinal cord promotes expression of myelin genes. In mice lacking MRF within the oligodendrocyte lineage, premyelinating oligodendrocytes are generated but display severe deficits in myelin gene expression and fail to myelinate. These mice display severe neurological abnormalities and die because of seizures during the third postnatal week. These findings establish MRF as a critical transcriptional regulator essential for oligodendrocyte maturation and CNS myelination.


Assuntos
Encéfalo/citologia , Regulação da Expressão Gênica , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Fatores de Transcrição/metabolismo , Animais , Encéfalo/metabolismo , Diferenciação Celular , Células Cultivadas , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia
3.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751752

RESUMO

We recently developed a blood-brain barrier (BBB)-penetrating enzyme transport vehicle (ETV) fused to the lysosomal enzyme iduronate 2-sulfatase (ETV:IDS) and demonstrated its ability to reduce glycosaminoglycan (GAG) accumulation in the brains of a mouse model of mucopolysaccharidosis (MPS) II. To accurately quantify GAGs, we developed a plate-based high-throughput enzymatic digestion assay coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously measure heparan sulfate and dermatan sulfate derived disaccharides in tissue, cerebrospinal fluid (CSF) and individual cell populations isolated from mouse brain. The method offers ultra-high sensitivity enabling quantitation of specific GAG species in as low as 100,000 isolated neurons and a low volume of CSF. With an LOD at 3 ng/mL and LLOQs at 5-10 ng/mL, this method is at least five times more sensitive than previously reported approaches. Our analysis demonstrated that the accumulation of CSF and brain GAGs are in good correlation, supporting the potential use of CSF GAGs as a surrogate biomarker for brain GAGs. The bioanalytical method was qualified through the generation of standard curves in matrix for preclinical studies of CSF, demonstrating the feasibility of this assay for evaluating therapeutic effects of ETV:IDS in future studies and applications in a wide variety of MPS disorders.


Assuntos
Biomarcadores/metabolismo , Glicosaminoglicanos/isolamento & purificação , Iduronato Sulfatase/genética , Mucopolissacaridose II/diagnóstico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Cromatografia Líquida , Dermatan Sulfato/farmacologia , Dissacarídeos/química , Modelos Animais de Doenças , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/farmacologia , Humanos , Iduronato Sulfatase/metabolismo , Camundongos , Mucopolissacaridose II/genética , Mucopolissacaridose II/patologia , Espectrometria de Massas em Tandem
4.
BMC Neurosci ; 17: 16, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27103572

RESUMO

BACKGROUND: Regeneration of new myelin is impaired in persistent multiple sclerosis (MS) lesions, leaving neurons unable to function properly and subject to further degeneration. Current MS therapies attempt to ameliorate autoimmune-mediated demyelination, but none directly promote the regeneration of lost and damaged myelin of the central nervous system (CNS). Development of new drugs that stimulate remyelination has been hampered by the inability to evaluate axonal myelination in a rapid CNS culture system. RESULTS: We established a high throughput cell-based assay to identify compounds that promote myelination. Culture methods were developed for initiating myelination in vitro using primary embryonic rat cortical cells. We developed an immunofluorescent phenotypic image analysis method to quantify the morphological alignment of myelin characteristic of the initiation of myelination. Using γ-secretase inhibitors as promoters of myelination, the optimal growth, time course and compound treatment conditions were established in a 96 well plate format. We have characterized the cortical myelination assay by evaluating the cellular composition of the cultures and expression of markers of differentiation over the time course of the assay. We have validated the assay scalability and consistency by screening the NIH clinical collection library of 727 compounds and identified ten compounds that promote myelination. Half maximal effective concentration (EC50) values for these compounds were determined to rank them according to potency. CONCLUSIONS: We have designed the first high capacity in vitro assay that assesses myelination of live axons. This assay will be ideal for screening large compound libraries to identify new drugs that stimulate myelination. Identification of agents capable of promoting the myelination of axons will likely lead to the development of new therapeutics for MS patients.


Assuntos
Axônios/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Esclerose Múltipla/tratamento farmacológico , Bainha de Mielina/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/farmacologia , Animais , Axônios/fisiologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Córtex Cerebral/fisiologia , Meios de Cultivo Condicionados/farmacologia , Imunofluorescência/métodos , Esclerose Múltipla/fisiopatologia , Bainha de Mielina/fisiologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/fisiologia , Ratos
5.
Glia ; 63(5): 768-79, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25557204

RESUMO

Inflammatory signals present in demyelinated multiple sclerosis lesions affect the reparative remyelination process conducted by oligodendrocyte progenitor cells (OPCs). Interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 have differing effects on the viability and growth of OPCs, however the effects of IL-17A are largely unknown. Primary murine OPCs were stimulated with IL-17A and their viability, proliferation, and maturation were assessed in culture. IL-17A-stimulated OPCs exited the cell cycle and differentiated with no loss in viability. Expression of the myelin-specific protein, proteolipid protein, increased in a cerebellar slice culture assay in the presence of IL-17A. Downstream, IL-17A activated ERK1/2 within 15 min and induced chemokine expression in 2 days. These results demonstrate that IL-17A exposure stimulates OPCs to mature and participate in the inflammatory response.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Encefalomielite Autoimune Experimental/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/enzimologia , Células-Tronco/efeitos dos fármacos , Animais , Células Cultivadas , Cerebelo/citologia , Cerebelo/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Citometria de Fluxo , Adjuvante de Freund/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/genética , Glicoproteína Mielina-Oligodendrócito/toxicidade , Técnicas de Cultura de Órgãos , Fragmentos de Peptídeos/toxicidade , Receptores de Interleucina-17/deficiência , Receptores de Interleucina-17/genética , Células-Tronco/fisiologia
6.
Mol Cell Neurosci ; 50(1): 45-57, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22472204

RESUMO

Hypothyroidism is a well-described cause of hypomyelination. In addition, thyroid hormone (T3) has recently been shown to enhance remyelination in various animal models of CNS demyelination. What are the ways in which T3 promotes the development and regeneration of healthy myelin? To begin to understand the mechanisms by which T3 drives myelination, we have identified genes regulated specifically by T3 in purified oligodendrocyte precursor cells (OPCs). Among the genes identified by genomic expression analyses were four transcription factors, Kruppel-like factor 9 (KLF9), basic helix-loop-helix family member e22 (BHLHe22), Hairless (Hr), and Albumin D box-binding protein (DBP), all of which were induced in OPCs by both brief and long term exposure to T3. To begin to investigate the role of these genes in myelination, we focused on the most rapidly and robustly induced of these, KLF9, and found it is both necessary and sufficient to promote oligodendrocyte differentiation in vitro. Surprisingly, we found that loss of KLF9 in vivo negligibly affects the formation of CNS myelin during development, but does significantly delay remyelination in cuprizone-induced demyelinated lesions. These experiments indicate that KLF9 is likely a novel integral component of the T3-driven signaling cascade that promotes the regeneration of lost myelin. Future analyses of the roles of KLF9 and other identified T3-induced genes in myelination may lead to novel insights into how to enhance the regeneration of myelin in demyelinating diseases such as multiple sclerosis.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Tri-Iodotironina/farmacologia , Animais , Diferenciação Celular/genética , Cuprizona/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Knockout , Bainha de Mielina/efeitos dos fármacos , Oligodendroglia/citologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno , Ratos , Fatores de Transcrição/metabolismo
7.
Mol Cell Neurosci ; 49(2): 120-6, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22044765

RESUMO

The SCN8A gene encodes the voltage-gated sodium channel Na(v)1.6, a major channel in neurons of the CNS and PNS. SCN8A contains two alternative exons,18N and 18A, that exhibit tissue specific splicing. In brain, the major SCN8A transcript contains exon 18A and encodes the full-length sodium channel. In other tissues, the major transcript contains exon 18N and encodes a truncated protein, due to the presence of an in-frame stop codon. Selection of exon 18A is therefore essential for generation of a functional channel protein, but the proteins involved in this selection have not been identified. Using a 2.6 kb Scn8a minigene containing exons 18N and 18A, we demonstrate that co-transfection with Fox-1 or Fox-2 initiates inclusion of exon 18A. This effect is dependent on the consensus Fox binding site located 28 bp downstream of exon 18A. We examined the alternative splicing of human SCN8A and found that the postnatal switch to exon 18A is completed later than 10 months of age. In purified cell populations, transcripts containing exon 18A predominate in neurons but are not present in oligodendrocytes or astrocytes. Transcripts containing exon 18N appear to be degraded by nonsense-mediated decay in HEK cells. Our data indicate that RBFOX proteins contribute to the cell-specific expression of Na(v)1.6 channels in mature neurons.


Assuntos
Processamento Alternativo , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Canais de Sódio/genética , Animais , Sítios de Ligação/genética , Linhagem Celular , Células Cultivadas , Éxons/genética , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Canal de Sódio Disparado por Voltagem NAV1.6 , Proteínas do Tecido Nervoso/metabolismo , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/genética , Ratos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Canais de Sódio/metabolismo
8.
Nat Neurosci ; 26(3): 416-429, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635496

RESUMO

Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. Here we describe a high-affinity human TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), to facilitate blood-brain barrier transcytosis. Upon peripheral delivery in mice, ATV:TREM2 showed improved brain biodistribution and enhanced signaling compared to a standard anti-TREM2 antibody. In human induced pluripotent stem cell (iPSC)-derived microglia, ATV:TREM2 induced proliferation and improved mitochondrial metabolism. Single-cell RNA sequencing and morphometry revealed that ATV:TREM2 shifted microglia to metabolically responsive states, which were distinct from those induced by amyloid pathology. In an AD mouse model, ATV:TREM2 boosted brain microglial activity and glucose metabolism. Thus, ATV:TREM2 represents a promising approach to improve microglial function and treat brain hypometabolism found in patients with AD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Microglia , Barreira Hematoencefálica , Distribuição Tecidual , Anticorpos , Encéfalo , Modelos Animais de Doenças , Glicoproteínas de Membrana , Receptores Imunológicos/genética
9.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35226042

RESUMO

Delivery of biotherapeutics across the blood-brain barrier (BBB) is a challenge. Many approaches fuse biotherapeutics to platforms that bind the transferrin receptor (TfR), a brain endothelial cell target, to facilitate receptor-mediated transcytosis across the BBB. Here, we characterized the pharmacological behavior of two distinct TfR-targeted platforms fused to iduronate 2-sulfatase (IDS), a lysosomal enzyme deficient in mucopolysaccharidosis type II (MPS II), and compared the relative brain exposures and functional activities of both approaches in mouse models. IDS fused to a moderate-affinity, monovalent TfR-binding enzyme transport vehicle (ETV:IDS) resulted in widespread brain exposure, internalization by parenchymal cells, and significant substrate reduction in the CNS of an MPS II mouse model. In contrast, IDS fused to a standard high-affinity bivalent antibody (IgG:IDS) resulted in lower brain uptake, limited biodistribution beyond brain endothelial cells, and reduced brain substrate reduction. These results highlight important features likely to impact the clinical development of TfR-targeting platforms in MPS II and potentially other CNS diseases.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Receptores da Transferrina , Proteínas Recombinantes de Fusão , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Iduronato Sulfatase/metabolismo , Iduronato Sulfatase/farmacologia , Lisossomos/metabolismo , Camundongos , Mucopolissacaridose II/metabolismo , Receptores da Transferrina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Distribuição Tecidual
10.
Dev Neurosci ; 33(1): 14-20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21346322

RESUMO

MicroRNAs (miRNAs) are a class of small (approx. 22 nt) noncoding RNAs that are capable of post-transcriptionally silencing mRNAs that contain sequences complementary to the miRNAs' 7- to 8-bp 'seed' sequence. As single miRNAs are often predicted to target up to hundreds of individual transcripts, miRNAs are able to broadly affect the overall protein expression state of the cell. This can translate into global effects on cellular health and differentiation state. Recently, several reports have identified crucial roles for miRNAs in controlling the production, differentiation, and health of myelinating cells of the mammalian nervous system. In this review, we will discuss how individual miRNAs regulate these various processes, and also how miRNA production in general is required for several stages of myelin generation and maintenance.


Assuntos
Diferenciação Celular/genética , MicroRNAs/metabolismo , Oligodendroglia/fisiologia , Células de Schwann/fisiologia , Neoplasias Encefálicas/genética , Diferenciação Celular/fisiologia , RNA Helicases DEAD-box/metabolismo , Expressão Gênica , Síndrome de Guillain-Barré/genética , Humanos , MicroRNAs/genética , Bainha de Mielina/metabolismo , Ribonuclease III/metabolismo
11.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622797

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by deficiency of the iduronate-2-sulfatase (IDS) enzyme, resulting in cellular accumulation of glycosaminoglycans (GAGs) throughout the body. Treatment of MPS II remains a considerable challenge as current enzyme replacement therapies do not adequately control many aspects of the disease, including skeletal and neurological manifestations. We developed an IDS transport vehicle (ETV:IDS) that is engineered to bind to the transferrin receptor; this design facilitates receptor-mediated transcytosis of IDS across the blood-brain barrier and improves its distribution into the brain while maintaining distribution to peripheral tissues. Here we show that chronic systemic administration of ETV:IDS in a mouse model of MPS II reduced levels of peripheral and central nervous system GAGs, microgliosis, and neurofilament light chain, a biomarker of neuronal injury. Additionally, ETV:IDS rescued auricular and skeletal abnormalities when introduced in adult MPS II mice. These effects were accompanied by improvements in several neurobehavioral domains, including motor skills, sensorimotor gating, and learning and memory. Together, these results highlight the therapeutic potential of ETV:IDS for treating peripheral and central abnormalities in MPS II. DNL310, an investigational ETV:IDS molecule, is currently in clinical trials as a potential treatment for patients with MPS II.


Assuntos
Barreira Hematoencefálica/metabolismo , Terapia de Reposição de Enzimas/métodos , Iduronato Sulfatase/administração & dosagem , Mucopolissacaridose II/tratamento farmacológico , Receptores da Transferrina/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Glicosaminoglicanos/metabolismo , Iduronato Sulfatase/genética , Memória/efeitos dos fármacos , Camundongos , Camundongos Knockout , Destreza Motora/efeitos dos fármacos , Mucopolissacaridose II/genética , Mucopolissacaridose II/metabolismo , Mucopolissacaridose II/fisiopatologia , Fenótipo , Filtro Sensorial/efeitos dos fármacos , Esqueleto/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Transcitose
12.
Ann Clin Transl Neurol ; 7(7): 1103-1116, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32515902

RESUMO

OBJECTIVE: To investigate neurodegenerative and inflammatory biomarkers in people with amyotrophic lateral sclerosis (PALS), evaluate their predictive value for ALS progression rates, and assess their utility as pharmacodynamic biomarkers for monitoring treatment effects. METHODS: De-identified, longitudinal plasma, and cerebrospinal fluid (CSF) samples from PALS (n = 108; 85 with samples from ≥2 visits) and controls without neurological disease (n = 41) were obtained from the Northeast ALS Consortium (NEALS) Biofluid Repository. Seventeen of 108 PALS had familial ALS, of whom 10 had C9orf72 mutations. Additional healthy control CSF samples (n = 35) were obtained from multiple sources. We stratified PALS into fast- and slow-progression subgroups using the ALS Functional Rating Scale-Revised change rate. We compared cytokines/chemokines and neurofilament (NF) levels between PALS and controls, among progression subgroups, and in those with C9orf72 mutations. RESULTS: We found significant elevations of cytokines, including MCP-1, IL-18, and neurofilaments (NFs), indicators of neurodegeneration, in PALS versus controls. Among PALS, these cytokines and NFs were significantly higher in fast-progression and C9orf72 mutation subgroups versus slow progressors. Analyte levels were generally stable over time, a key feature for monitoring treatment effects. We demonstrated that CSF/plasma neurofilament light chain (NFL) levels may predict disease progression, and stratification by NFL levels can enrich for more homogeneous patient groups. INTERPRETATION: Longitudinal stability of cytokines and NFs in PALS support their use for monitoring responses to immunomodulatory and neuroprotective treatments. NFs also have prognostic value for fast-progression patients and may be used to select similar patient subsets in clinical trials.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/metabolismo , Citocinas/metabolismo , Progressão da Doença , Proteínas de Neurofilamentos/metabolismo , Adulto , Idoso , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Bancos de Espécimes Biológicos , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Proteína C9orf72/genética , Citocinas/sangue , Citocinas/líquido cefalorraquidiano , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Proteínas de Neurofilamentos/sangue , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Prognóstico
13.
Neuron ; 105(5): 837-854.e9, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31902528

RESUMO

Loss-of-function (LOF) variants of TREM2, an immune receptor expressed in microglia, increase Alzheimer's disease risk. TREM2 senses lipids and mediates myelin phagocytosis, but its role in microglial lipid metabolism is unknown. Combining chronic demyelination paradigms and cell sorting with RNA sequencing and lipidomics, we find that wild-type microglia acquire a disease-associated transcriptional state, while TREM2-deficient microglia remain largely homeostatic, leading to neuronal damage. TREM2-deficient microglia phagocytose myelin debris but fail to clear myelin cholesterol, resulting in cholesteryl ester (CE) accumulation. CE increase is also observed in APOE-deficient glial cells, reflecting impaired brain cholesterol transport. This finding replicates in myelin-treated TREM2-deficient murine macrophages and human iPSC-derived microglia, where it is rescued by an ACAT1 inhibitor and LXR agonist. Our studies identify TREM2 as a key transcriptional regulator of cholesterol transport and metabolism under conditions of chronic myelin phagocytic activity, as TREM2 LOF causes pathogenic lipid accumulation in microglia.


Assuntos
Encéfalo/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Microglia/metabolismo , Bainha de Mielina/metabolismo , Fagocitose/genética , Receptores Imunológicos/genética , Acetil-CoA C-Acetiltransferase/antagonistas & inibidores , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Ésteres do Colesterol/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Células-Tronco Pluripotentes Induzidas , Metabolismo dos Lipídeos/genética , Lipidômica , Receptores X do Fígado/agonistas , Camundongos , Camundongos Knockout , Camundongos Knockout para ApoE , RNA-Seq
14.
Sci Transl Med ; 12(545)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461331

RESUMO

Most lysosomal storage diseases (LSDs) involve progressive central nervous system (CNS) impairment, resulting from deficiency of a lysosomal enzyme. Treatment of neuronopathic LSDs remains a considerable challenge, as approved intravenously administered enzyme therapies are ineffective in modifying CNS disease because they do not effectively cross the blood-brain barrier (BBB). We describe a therapeutic platform for increasing the brain exposure of enzyme replacement therapies. The enzyme transport vehicle (ETV) is a lysosomal enzyme fused to an Fc domain that has been engineered to bind to the transferrin receptor, which facilitates receptor-mediated transcytosis across the BBB. We demonstrate that ETV fusions containing iduronate 2-sulfatase (ETV:IDS), the lysosomal enzyme deficient in mucopolysaccharidosis type II, exhibited high intrinsic activity and degraded accumulated substrates in both IDS-deficient cell and in vivo models. ETV substantially improved brain delivery of IDS in a preclinical model of disease, enabling enhanced cellular distribution to neurons, astrocytes, and microglia throughout the brain. Improved brain exposure for ETV:IDS translated to a reduction in accumulated substrates in these CNS cell types and peripheral tissues and resulted in a complete correction of downstream disease-relevant pathologies in the brain, including secondary accumulation of lysosomal lipids, perturbed gene expression, neuroinflammation, and neuroaxonal damage. These data highlight the therapeutic potential of the ETV platform for LSDs and provide preclinical proof of concept for TV-enabled therapeutics to treat CNS diseases more broadly.


Assuntos
Barreira Hematoencefálica , Iduronato Sulfatase , Animais , Encéfalo , Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Lisossomos , Camundongos
15.
J Neurosci ; 28(33): 8294-305, 2008 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-18701692

RESUMO

One of the difficulties in studying cellular interactions in the CNS is the lack of effective methods to purify specific neuronal populations of interest. We report the development of a novel purification scheme, cholera toxin beta (CTB) immunopanning, in which a particular CNS neuron population is selectively labeled via retrograde axonal transport of the cell-surface epitope CTB, and then purified via immobilization with anti-CTB antibody. We have demonstrated the usefulness and versatility of this method by purifying both retinal ganglion cells and corticospinal motor neurons (CSMNs). Genomic expression analyses of purified CSMNs revealed that they express significant levels of many receptors for growth factors produced by brain endothelial cells; three of these factors, CXCL12, pleiotrophin, and IGF2 significantly enhanced purified CSMN survival, similar to previously characterized CSMN trophic factors BDNF and IGF1. In addition, endothelial cell conditioned medium significantly promoted CSMN neurite outgrowth. These findings demonstrate a useful method for the purification of several different types of CNS projection neurons, which in principle should work in many mammalian species, and provide evidence that endothelial-derived factors may represent an overlooked source of trophic support for neurons in the brain.


Assuntos
Encéfalo/citologia , Separação Celular/métodos , Células Endoteliais/citologia , Neurônios Motores/citologia , Fatores de Crescimento Neural/fisiologia , Tratos Piramidais/citologia , Animais , Transporte Axonal/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Células Cultivadas , Toxina da Cólera/fisiologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Fatores de Crescimento Neural/biossíntese , Fatores de Crescimento Neural/genética , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Tratos Piramidais/irrigação sanguínea , Tratos Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley
16.
Neurotherapeutics ; 16(3): 808-827, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30815844

RESUMO

The development of neuroprotective therapies is a sought-after goal. By screening combinatorial chemical libraries using in vitro assays, we identified the small molecule BN201 that promotes the survival of cultured neural cells when subjected to oxidative stress or when deprived of trophic factors. Moreover, BN201 promotes neuronal differentiation, the differentiation of precursor cells to mature oligodendrocytes in vitro, and the myelination of new axons. BN201 modulates several kinases participating in the insulin growth factor 1 pathway including serum-glucocorticoid kinase and midkine, inducing the phosphorylation of NDRG1 and the translocation of the transcription factor Foxo3 to the cytoplasm. In vivo, BN201 prevents axonal and neuronal loss, and it promotes remyelination in models of multiple sclerosis, chemically induced demyelination, and glaucoma. In summary, we provide a new promising strategy to promote neuroaxonal survival and remyelination, potentially preventing disability in brain diseases.


Assuntos
Amidas/uso terapêutico , Axônios/efeitos dos fármacos , Encefalite/tratamento farmacológico , Bainha de Mielina/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Peptoides/uso terapêutico , Pirrolidinonas/uso terapêutico , Animais , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Imunofluorescência , Glaucoma/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nervo Óptico/efeitos dos fármacos , Proguanil , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Triazinas
17.
J Neurosci ; 27(23): 6185-96, 2007 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-17553990

RESUMO

The intracellular molecular mechanism that controls the timing of oligodendrocyte differentiation remains unknown. Temple and Raff (1986) previously showed that an oligodendrocyte precursor cell (OPC) can divide a maximum of approximately eight times before its daughter cells simultaneously cease proliferating and differentiate into oligodendrocytes. They postulated that over time the level of an intracellular molecule might synchronously change in each daughter cell, ultimately reaching a level that prohibited additional proliferation. Here, we report the discovery of such a molecule, the cyclin-dependent kinase inhibitor p57(Kip2) (Cdkn1c). We show in vitro that all daughters of a clone of OPCs express similar levels of p57(Kip2), that p57(Kip2) levels increase over time in proliferating OPCs, and that p57(Kip2) levels regulate how many times an OPC can divide before differentiating. These findings reveal a novel part of the mechanism by which OPCs measure time and are likely to extend to similar timers in many other precursor cell types.


Assuntos
Relógios Biológicos/fisiologia , Diferenciação Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p57/fisiologia , Líquido Intracelular/fisiologia , Oligodendroglia/citologia , Oligodendroglia/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p57/biossíntese , Inibidor de Quinase Dependente de Ciclina p57/genética , Camundongos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
18.
J Neurosci ; 27(32): 8593-603, 2007 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-17687037

RESUMO

To what extent do postmitotic neurons regulate gene expression during development or after injury? We took advantage of our ability to highly purify retinal ganglion cells (RGCs) to profile their pattern of gene expression at 13 ages from embryonic day 17 through postnatal day 21. We found that a large proportion of RGC genes are regulated dramatically throughout their postmitotic development, although the genes regulated through development in vivo generally are not regulated similarly by RGCs allowed to age in vitro. Interestingly, we found that genes regulated by developing RGCs are not generally correlated with genes regulated in RGCs stimulated to regenerate their axons. We unexpectedly found three genes associated with glaucoma, optineurin, cochlin, and CYP1B1 (cytochrome P450, family 1, subfamily B, polypeptide 1), previously thought to be primarily expressed in the trabecular meshwork, which are highly expressed by RGCs and regulated through their development. We also identified several other RGC genes that are encoded by loci linked to glaucoma. The expression of glaucoma-linked genes by RGCs suggests that, at least in some cases, RGCs may be directly involved in glaucoma pathogenesis rather than indirectly involved in response to increased intraocular pressure. Consistent with this hypothesis, we found that CYP1B1 overexpression potentiates RGC survival.


Assuntos
Oftalmopatias/genética , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Ganglionares da Retina/fisiologia , Animais , Animais Recém-Nascidos , Sobrevivência Celular/fisiologia , Oftalmopatias/metabolismo , Glaucoma/genética , Glaucoma/metabolismo , Humanos , Camundongos , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/citologia
19.
J Neurosci ; 26(43): 10967-83, 2006 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17065439

RESUMO

To better understand the molecular mechanisms governing oligodendrocyte (OL) differentiation, we have used gene profiling to quantitatively analyze gene expression in synchronously differentiating OLs generated from pure oligodendrocyte precursor cells in vitro. By comparing gene expression in these OLs to OLs generated in vivo, we discovered that the program of OL differentiation can progress normally in the absence of heterologous cell-cell interactions. In addition, we found that OL differentiation was unexpectedly prolonged and occurred in at least two sequential stages, each characterized by changes in distinct complements of transcription factors and myelin proteins. By disrupting the normal dynamic expression patterns of transcription factors regulated during OL differentiation, we demonstrated that these sequential stages of gene expression can be independently controlled. We also uncovered several genes previously uncharacterized in OLs that encode transmembrane, secreted, and cytoskeletal proteins that are as highly upregulated as myelin genes during OL differentiation. Last, by comparing genomic loci associated with inherited increased risk of multiple sclerosis (MS) to genes regulated during OL differentiation, we identified several new positional candidate genes that may contribute to MS susceptibility. These findings reveal a previously unexpected complexity to OL differentiation and suggest that an intrinsic program governs successive phases of OL differentiation as these cells extend and align their processes, ensheathe, and ultimately myelinate axons.


Assuntos
Diferenciação Celular/genética , Oligodendroglia/citologia , Oligodendroglia/fisiologia , Análise Serial de Proteínas/métodos , Animais , Células Cultivadas , Regulação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Locos de Características Quantitativas/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/fisiologia
20.
Trends Genet ; 18(1): 29-34, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11750698

RESUMO

Odorant receptor genes comprise the largest known family of G-protein-coupled receptors in vertebrates. These receptor genes are tightly clustered in the genomes of every vertebrate organism investigated, including zebrafish, mice and humans, and they appear to have expanded and duplicated throughout evolution. In a mechanism that has yet to be elucidated, each olfactory neuron expresses a single receptor gene. This highly restricted expression pattern underlies the ability to distinguish between a wide variety of odorants. Here, we address the evolutionary expansion of odorant receptor genes and the role genomic organization of these genes might have in their tightly regulated expression.


Assuntos
Receptores Odorantes/genética , Alelos , Animais , Evolução Biológica , Regulação da Expressão Gênica , Genoma , Humanos , Camundongos , Modelos Genéticos , Família Multigênica , Neurônios Receptores Olfatórios/metabolismo , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa