Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Med Vet Entomol ; 38(2): 179-188, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38296831

RESUMO

Fleas in the genus Ctenocephalides serve as biological vectors or intermediate hosts of microorganisms such as bacteria, rickettsia, protozoa and helminths. Ctenocephalides felis has a worldwide distribution, while C. orientis has long been considered as a subspecies of C. felis in Asia. To help the morphological recognition of these two species and further explore their differences, we used the geometric morphometric approach applied to the head. Both sexes were examined. Five anatomical landmarks of the head were used, and to capture the curvature of the front head, 10 semilandmarks were added. There was a consistent difference in species classification accuracy when considering landmarks only versus their combination with semilandmarks, suggesting the importance of the curve of the head as a taxonomic signal. Using or not the labels in the reclassification analyses, the head shape allowed by itself almost perfect recognition of the two species, in both sexes, even after adjustment for prior probabilities. The same approach disclosed a high level of sexual size and shape dimorphism in both species. The contribution of size variation to the discrimination by shape was much more important between sexes (from 27% to 45%) than between species (from 0.7% to 7.1%). Nevertheless, in our data, size never could represent a way to reliably recognise the sex of an individual, even less its species. Geographical variation in head shape could only be explored for the C. orientis sample. No significant correlation of morphometric variation with geography could be detected, which would be consistent with gene flow between Thai provinces. The geometric morphometric approach of the flea head, when it incorporates head curves, is a promising tool for rapid, economical, and accurate species and sex identification. It is, therefore, a useful tool for future epidemiological and demographic studies.


Assuntos
Ctenocephalides , Cabeça , Animais , Feminino , Tailândia , Masculino , Ctenocephalides/anatomia & histologia , Ctenocephalides/classificação , Cabeça/anatomia & histologia , Especificidade da Espécie , Caracteres Sexuais , Geografia
2.
Mem Inst Oswaldo Cruz ; 116: e210259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35137904

RESUMO

BACKGROUND: Panstrongylus rufotuberculatus (Hemiptera-Reduviidae) is a triatomine species with a wide geographic distribution and a broad phenotypic variability. In some countries, this species is found infesting and colonising domiciliary ecotopes representing an epidemiological risk factor as a vector of Trypanosoma cruzi, etiological agent of Chagas disease. In spite of this, little is known about P. rufotuberculatus genetic diversity. METHODS: Cytogenetic studies and DNA sequence analyses of one nuclear (ITS-2) and two mitochondrial DNA sequences (cyt b and coI) were carried out in P. rufotuberculatus individuals collected in Bolivia, Colombia, Ecuador and Mexico. Moreover, a geometric morphometrics study was applied to Bolivian, Colombian, Ecuadorian and French Guiana samples. OBJECTIVES: To explore the genetic and phenetic diversity of P. rufotuberculatus from different countries, combining chromosomal studies, DNA sequence analyses and geometric morphometric comparisons. FINDINGS: We found two chromosomal groups differentiated by the number of X chromosomes and the chromosomal position of the ribosomal DNA clusters. In concordance, two main morphometric profiles were detected, clearly separating the Bolivian sample from the other ones. Phylogenetic DNA analyses showed that both chromosomal groups were closely related to each other and clearly separated from the remaining Panstrongylus species. High nucleotide divergence of cyt b and coI fragments were observed among P. rufotuberculatus samples from Bolivia, Colombia, Ecuador and Mexico (Kimura 2-parameter distances higher than 9%). MAIN CONCLUSIONS: Chromosomal and molecular analyses supported that the two chromosomal groups could represent different closely related species. We propose that Bolivian individuals constitute a new Panstrongylus species, being necessary a detailed morphological study for its formal description. The clear morphometric discrimination based on the wing venation pattern suggests such morphological description might be conclusive.


Assuntos
Doença de Chagas , Heterópteros , Panstrongylus , Triatoma , Animais , Humanos , Insetos Vetores/genética , Panstrongylus/genética , Filogenia
3.
Mem Inst Oswaldo Cruz ; 116: e210015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076075

RESUMO

Chagas disease persists as one of the most important, and yet most neglected, diseases in the world, and several changes in its epidemiological aspects have been recorded since its discovery. Currently, some of the most relevant changes are related to: (i) the reduction in the incidence of the endemic due to the control of the most important vectors, Triatoma infestans and Rhodnius prolixus, in many countries; (ii) the migration of human populations spreading cases of the disease throughout the world, from endemic to non-endemic areas, transforming Chagas disease into a global threat; and (iii) new acute cases and deaths caused by oral transmission, especially in the north of Brazil. Despite the reduction in the number of cases, new challenges need to be responded to, including monitoring and control activities aiming to prevent house infestation by the secondary vectors from occurring. In 1979, Lent & Wygodzinsky(1) published the most complete review of the subfamily Triatominae, encompassing 111 recognised species in the taxon. Forty-two years later, 46 new species and one subspecies have been described or revalidated. Here we summarise the new species and contextualise them regarding their ecology, epidemiologic importance, and the obstacles they pose to the control of Chagas disease around the world.


Assuntos
Doença de Chagas , Triatoma , Triatominae , Trypanosoma cruzi , Animais , Brasil/epidemiologia , Doença de Chagas/epidemiologia , Doença de Chagas/prevenção & controle , Humanos , Insetos Vetores
4.
Folia Parasitol (Praha) ; 632016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27827335

RESUMO

Adult flies of the genus Stomoxys Geoffroy, 1762 (Diptera: Muscidae), especially S. pullus Austen, 1909, S. uruma Shinonaga et Kano, 1966 and S. indicus Picard, 1908, are morphologically similar and sometimes difficult to distinguish when using external morphological characteristics. These species may act as vectors and/or potential vectors of many pathogens (virus, bacteria and protozoa). Their correct identification is important to target the vectors involved in the transmission of the pathogens and also helps in the fly control program.The aim of the present study was to distinguish three species which are difficult to separate using traditional diagnostic characters for species of Stomoxys such as colour patterns and body proportions. Modern morphometrics, both landmark and outline-based, was used to access wing geometry of S. pullus, S. uruma and S. indicus. A total of 198 and 190 wing pictures were analysed for landmark- and outline-based approaches, respectively. Wing shape was able to separate species and sexes of the three Stomoxys flies with highly significant difference of Mahalanobis distances. The cross-validated classification scores ranged from 76% to 100% for landmark and 77% to 96% for outline-based morphometrics. The geometry of wing features appears to be a very useful, low-cost tool to distinguish among the vectors S. pullus, S. uruma and S. indicus.


Assuntos
Entomologia/métodos , Muscidae/classificação , Animais , Entomologia/normas , Muscidae/anatomia & histologia , Nigéria , Reprodutibilidade dos Testes , Especificidade da Espécie
5.
Mem Inst Oswaldo Cruz ; 110(3): 319-23, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25807471

RESUMO

The migration of invasive vector species has contributed to the worldwide extension of infectious diseases such as dengue (Aedes aegypti) and chikungunya (Aedes albopictus). It is probably a similar behaviour for certain vectors of Chagas disease which allowed it to become a continental burden in Latin America. One of them, Triatoma rubrofasciata has also been spreading throughout the tropical and subtropical world. Here, the recent and massive peridomestic presence of T. rubrofasciata in Vietnam cities is reported, and tentatively explained, highlighting the need for improved entomological surveillance.


Assuntos
Insetos Vetores/classificação , Triatoma/classificação , Animais , Espécies Introduzidas , Vietnã
6.
Acta Trop ; 252: 107126, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316241

RESUMO

Fly identification is the primary step of analysis in forensic entomology. Although morphology and molecular techniques are considered satisfactory methods, some constraints may arise from a financial or even human point of view. Over the past decade, the geometric morphometric approach has been increasingly advocated for the classification and identification of arthropods. This study explored the method for species identification of 800 third-instar larvae of eight blow fly species of medical and forensic importance: Chrysomya chani Kurahashi, Chrysomya megacephala (Fabricius), Chrysomya (Ceylonomyia) nigripes Aubertin, Chrysomya pinguis (Walker), Chrysomya (Achoetandrus) rufifacies (Macquart), Hemipyrellia ligurriens (Wiedemann), Lucilia cuprina (Wiedemann), and Lucilia porphyrina (Walker). Based on the posterior spiracles geometry, the cross-validation revealed a relatively high percentage of correct classification in most species, ranking from 86% to 100%. The results of this study confirmed that the geometric morphometric (GM) analysis of posterior spiracles might be utilized as a larva identification tool. Therefore, this GM method represents one way of overcoming difficulties with the identification of blow fly larvae and can support further studies of these flies.


Assuntos
Dípteros , Animais , Humanos , Larva , Tailândia , Calliphoridae
7.
Heliyon ; 10(14): e33908, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100469

RESUMO

Ascoschoengastia indica is one of the dominant chigger species in Southeast Asia and a potential carrier of scrub typhus, due in part to its cosmopolitan nature. This study explored the possible biological significance of the observed dimorphism in the shape of its scutum sensilla. Sensilla are specialized structures that are generally adapted to perform specific functions related to sensory capabilities, so their shape and sizes are expected to vary between taxa. We describe morphological variation of the sensilla of A. indica in Thailand. The sensilla had either a round or an ovoid, club-shaped form, which was not dependent on the particularly locality or host. Ignoring the precise function of the sensilla and their morphological variation, our study attempted to answer the following single question: Do the distinct forms of the sensilla indicate possible heterogeneity of the A. indica species? The two forms, named S1 and S2, were compared by genetic and morphometric techniques. The genetic analysis was based on the COI sequences, while the morphometric comparison used the scutum, an organ shown to be of taxonomic value for chigger mites. Neither morphometric nor genetic data revealed any evidence of a speciation process underlying the morphological variation in sensillum types.

8.
Mem Inst Oswaldo Cruz ; 108(1): 91-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23440121

RESUMO

The presence of Triatoma infestans in habitats treated with insecticides constitutes a frequent problem in endemic areas. Basing our study on the hypothesis that descendants of a residual population should be more similar to the pre-treatment population than to any other, we compared the indications of two quantitative morphological approaches. This study seeks to find the origin of 247 T. infestans from three populations found in two chicken coops and a goat corral after treatment with insecticides. The results obtained by quantitative morphology suggest that the T. infestans found between three-34 months after the application of insecticides formed mixed populations with insects derived from residual foci and neighbouring habitats. Our analyses also showed the presence of a phenotype which does not resemble neither the pre-treatment phenotype nor the one from neighbouring populations, suggesting the presence of a particular post-treatment phenotype. The heads size showed some variations in males from different populations and remained unchanged in females, which reinforces the hypothesis of an intraspecific competition for food with priority for females. This article presents, for the first time, the combined analysis of geometric morphometry of heads and antennal phenotypes to identify the composition of reinfesting populations.


Assuntos
Insetos Vetores/anatomia & histologia , Triatoma/anatomia & histologia , Animais , Argentina , Doença de Chagas/transmissão , Galinhas , Feminino , Cabras , Abrigo para Animais , Controle de Insetos/métodos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/genética , Inseticidas , Masculino , Fenótipo , Pirazóis , Piretrinas , Triatoma/efeitos dos fármacos , Triatoma/genética
9.
Parasit Vectors ; 15(1): 466, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517855

RESUMO

BACKGROUND: Triatoma dimidiata is a vector of the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease. Phenotypic plasticity allows an organism to adjust its phenotype in response to stimuli or environmental conditions. Understanding the effect of T. cruzi on the phenotypic plasticity of its vectors, known as triatomines, has attracted great interest because of the implications of the parasite-triatomine interactions in the eco-epidemiology and transmission of the etiologic agent of Chagas disease. We investigated if the infection of the vector with T. cruzi may be associated with a change in the antennal phenotype of sylvatic, domestic, and laboratory-reared populations of T. dimidiata. METHODS: The abundance of each type of sensillum (bristles, basiconic, thick- and thin-walled trichoid) on the antennae of T. cruzi-infected and non-infected T. dimidiata reared in the laboratory or collected in sylvatic and domestic ecotopes were measured under light microscopy and compared using Kruskal-Wallis non-parametric tests and permutational multivariate analysis of variance. RESULTS: We found significant differences between sensilla patterns of infected and non-infected insects within sylvatic and domestic populations. Conversely, we found no significant differences between sensilla patterns of infected and non-infected insects within the laboratory-reared population. Besides, for sylvatic and domestic populations, sexual dimorphism tended to be increased in infected insects. CONCLUSION: The differences observed in infected insects could be linked to higher efficiency in the perception of odor molecules related to the search for distant mates and hosts and the flight dispersal in search of new habitats. In addition, these insects could have a positive effect on population dynamics and the transmission of T. cruzi.


Assuntos
Doença de Chagas , Kinetoplastida , Triatoma , Triatominae , Trypanosoma cruzi , Trypanosomatina , Animais , Triatoma/fisiologia , Trypanosoma cruzi/genética , Fenótipo
10.
Insects ; 13(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555065

RESUMO

An infestation of a Cimicidae (Hemiptera: Cimicidae) member, especially the bed bug, can cause economic loss and impact health. A cost-effective and user-friendly method for identifying the infesting species will help with the early detection and control of infestations. A linear morphometric method is often used, but it requires the examination of many characters and a highly preserved specimen. We conducted a comparative morphometric study of the effectiveness of Cimicidae classification using a single organ, the pronotum, through outline-based and linear morphometric methods. Bat (Stricticimex parvus), human (Cimex hemipterus), and bird (Paracimex sp.) ectoparasites were subject of the study. With both methods, the properties of size and shape were compared and used separately to classify the specimens. Classification analyses of the two methods provided similar results, but more informative variables of size and shape were obtained with the outline-based approach. Size, as analyzed with the outline-based method, could detect sexual dimorphism, and produced better reclassification. The shape variables obtained from the linear measurements were strongly influenced by size variation, much more than the ones obtained from coordinates describing the pronotum contours. Our data suggest that the outline-based approach provides better characterization variables, thus we recommend them for a wider use in other Cimicidae family members.

11.
Parasit Vectors ; 15(1): 327, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123736

RESUMO

BACKGROUND: Most sand fly species are located in the Americas; some act as vectors of leishmaniasis and other human diseases. In Bolivia, about 25% of Neotropical species have been identified, and only a few have been implicated as vectors of cutaneous and visceral leishmaniasis. A new species of anthropophilic sand fly from the sub-Andean region of Alto Beni is described herein. METHODS: A large systematic entomological survey was carried out in a subtropical humid forest located in the Marimonos mountain range, at around 900 m altitude, in the municipality of Palos Blancos, Sud Yungas Province, Department of La Paz, Bolivia. Sand flies were captured over a period of 26 months between January 1982 and February 1984, at the ground and canopy level, using both CDC light traps and protected human bait. A total of 24,730 sand flies were collected on the ground, distributed in 16 species, and 3259 in the canopy, with eight species. One of these species was labeled as Pintomia (Pifanomyia) nevesi, although certain morphological features allowed us to doubt that it was that taxon. To define the identity of this sand fly, a re-evaluation (this work) was recently carried out through morphological analyses and measurements of the available specimens mounted on Euparal, previously labeled as Pi. (Pif.) nevesi. RESULTS: Based on the morphological traits and measurements, the re-evaluated specimens were definitively identified as a new sand fly species, Pintomyia (Pifanomyia) veintemillasi, closely related to Pi. (Pif.) nevesi and Pintomyia (Pifanomyia) maranonensis within the Evansi series. This new sand fly was the third most numerous anthropophilic species at the floor (6.2%) and the second most numerous anthropophilic at the canopy (35.1%). CONCLUSIONS: A new anthropophilic sand fly species is described as Pi. (Pif.) veintemillasi n. sp. This sand fly species was caught at about 900 m altitude in the Marimonos mountain range, a highly endemic area for cutaneous and mucosal leishmaniasis due to Leishmania (Viannia) braziliensis. Therefore, this species could be involved in the leishmaniasis transmission in the sub-Andean foothills of Alto Beni, Department of La Paz, Bolivia.


Assuntos
Leishmania braziliensis , Leishmaniose , Phlebotomus , Psychodidae , Animais , Bolívia , Humanos , Insetos Vetores , Psychodidae/anatomia & histologia , Inquéritos e Questionários
12.
Insects ; 13(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35323585

RESUMO

All members of the ant genus Odontomachus Latreille, 1804 are venomous ants. Four species in this genus have been identified from Thailand: Odontomachus latidens Mayr, 1867; O. monticola Emery, 1892; O. rixosus Smith, 1757; and O. simillimus Smith, 1758. The three latter species are available and have been used for an outline morphometric study. They display similar morphology, which makes their distinction very difficult except for highly qualified individuals. A total of 80 worker specimens were studied, exploring the contour shapes of their head and pronotum as possible taxonomic characters. The size of each body part was estimated determining the contour perimeter, the values for which were largely overlapping between O. rixosus and O. simillimus; most O. monticola specimens exhibited a significantly larger size. In contrast to the size, each contour shape of the head or pronotum established O. rixosus as the most distinct species. An exploratory data analysis disclosed the higher taxonomic signal of the head contour relative to the pronotum one. The scores obtained for validated reclassification were much better for the head (99%) than for the pronotum (82%). This study supports outline morphometrics of the head as a promising approach to contribute to the morphological identification of ant species, at least for monomorphic workers.

13.
Insects ; 12(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919376

RESUMO

Accurate identification of mosquito species is critically important for monitoring and controlling the impact of human diseases they transmit. Here, we investigate four mosquito species: Aedes aegypti, Ae. albopictus, Ae. scutellaris and Verrallina dux that co-occur in tropical and subtropical regions, and whose morphological similarity challenges their accurate identification, a crucial requirement in entomological surveillance programs. Previous publications reveal a clear taxonomic signal embedded in wing cell landmark configuration, as well as in the external contour of the wings. We explored this signal for internal cells of the wings as well, to determine whether internal cells could uniformly provide the same taxonomic information. For each cell to be tentatively assigned to its respective species, i.e., to measure the amount of its taxonomic information, we used the shape of its contour, rather than its size. We show that (i) the taxonomic signal of wing shape is not uniformly spread among internal cells of the wing, and (ii) the amount of taxonomic information of a given cell depends on the species under comparison. This unequal taxonomic signal of internal cells is not related to size, nor to apparent shape complexity. The strong taxonomic signal of some cells ensures that even partly damaged wings can be used to improve species recognition.

14.
Insects ; 12(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34821775

RESUMO

Tabanus spp., also known as horse flies (Diptera: Tabanidae), are important vectors of several animal pathogens. Adult females of Tabanus megalops and Tabanus striatus, which are members of the T. striatus complex, are morphologically similar and hence difficult to distinguish using morphological characteristics. In addition, molecular identification by DNA barcoding is also unable to distinguish these species. These two species can occur sympatrically with Tabanus rubidus, which is morphologically similar to T. megalops and T. striatus. Wing geometric morphometrics has been widely used in various insects to distinguish morphologically similar species. This study explored the effectiveness of landmark-based geometrics at distinguishing and identifying T. megalops, T. rubidus, and T. striatus in Thailand. Specimens were collected from different geographical regions of Thailand, and only unambiguously identified specimens were used for geometric morphometric analyses. Left wings of females of T. megalops (n = 160), T. rubidus (n = 165), and T. striatus (n = 85) were photographed, and 22 wing landmarks were used for the analysis. Wing shape was able to distinguish among species with high accuracy scores, ranging from 94.38% to 99.39%. We showed that morphologically very close species of Tabanus can be reliably distinguished by the geometry of their wing venation, and we showed how our experimental material could be used as a reference to tentatively identify new field collected specimens.

15.
PeerJ ; 8: e8597, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117632

RESUMO

BACKGROUND: Fasciola hepatica and F. gigantica cause fascioliasis in both humans and livestock. Some adult specimens of Fasciola sp. referred to as "intermediate forms" based on their genetic traits, are also frequently reported. Simple morphological criteria are unreliable for their specific identification. In previous studies, promising phenotypic identification scores were obtained using morphometrics based on linear measurements (distances, angles, curves) between anatomical features. Such an approach is commonly termed "traditional" morphometrics, as opposed to "modern" morphometrics, which is based on the coordinates of anatomical points. METHODS: Here, we explored the possible improvements that modern methods of morphometrics, including landmark-based and outline-based approaches, could bring to solving the problem of the non-molecular identification of these parasites. F. gigantica and Fasciola intermediate forms suitable for morphometric characterization were selected from Thai strains following their molecular identification. Specimens of F. hepatica were obtained from the Liverpool School of Tropical Medicine (UK). Using these three taxa, we tested the taxonomic signal embedded in traditional linear measurements versus the coordinates of anatomical points (landmark- and outline-based approaches). Various statistical techniques of validated reclassification were used, based on either the shortest Mahalanobis distance, the maximum likelihood, or the artificial neural network method. RESULTS: Our results revealed that both traditional and modern morphometric approaches can help in the morphological identification of Fasciola sp. We showed that the accuracy of the traditional approach could be improved by selecting a subset of characters among the most contributive ones. The influence of size on discrimination by shape was much more important in traditional than in modern analyses. In our study, the modern approach provided different results according to the type of data: satisfactory when using pseudolandmarks (outlines), less satisfactory when using landmarks. The different reclassification methods provided approximately similar scores, with a special mention to the neural network, which allowed improvements in accuracy by combining data from both morphometric approaches. CONCLUSION: We conclude that morphometrics, whether traditional or modern, represent a valuable tool to assist in Fasciola species recognition. The general level of accuracy is comparable among the various methods, but their demands on skills and time differ. Based on the outline method, our study could provide the first description of the shape differences between species, highlighting the more globular contours of the intermediate forms.

16.
Parasit Vectors ; 13(1): 226, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375868

RESUMO

BACKGROUND: Chagas disease is a parasitic infection transmitted by "kissing bugs" (Hemiptera: Reduviidae: Triatominae) that has a huge economic impact in Latin American countries. The vector species with the upmost epidemiological importance in Ecuador are Rhodnius ecuadoriensis (Lent & Leon, 1958) and Triatoma dimidiata (Latreille, 1811). However, other species such as Panstrongylus howardi (Neiva, 1911) and Panstrongylus chinai (Del Ponte, 1929) act as secondary vectors due to their growing adaptation to domestic structures and their ability to transmit the parasite to humans. The latter two taxa are distributed in two different regions, they are allopatric and differ mainly by their general color. Their relative morphological similarity led some authors to suspect that P. chinai is a melanic form of P. howardi. METHODS: The present study explored this question using different approaches: antennal phenotype; geometric morphometrics of heads, wings and eggs; cytogenetics; molecular genetics; experimental crosses; and ecological niche modeling. RESULTS: The antennal morphology, geometric morphometrics of head and wing shape and cytogenetic analysis were unable to show distinct differences between the two taxa. However, geometric morphometrics of the eggs, molecular genetics, ecological niche modeling and experimental crosses including chromosomal analyses of the F1 hybrids, in addition to their coloration and current distribution support the hypothesis that P. chinai and P. howardi are separate species. CONCLUSIONS: Based on the evidence provided here, P. howardi and P. chinai should not be synonymized. They represent two valid, closely related species.


Assuntos
Panstrongylus/classificação , Animais , Doença de Chagas/transmissão , Citogenética , Equador , Insetos Vetores/classificação , Insetos Vetores/parasitologia , Panstrongylus/parasitologia , Patologia Molecular , Fenótipo
17.
J Med Entomol ; 46(5): 994-1000, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19769028

RESUMO

Wing geometric morphometry of Triatoma infestans (Klug) (Hemiptera: Reduviidae) populations in northwestern Argentina showed that individual collection sites represent the discrete unit where metric differentiation took place. Here we studied temporal variations in wing size and shape of T. infestans populations from defined capture sites on three occasions between 2000 and 2003. Bugs collected from domiciles and/or storerooms had significantly larger right-wing centroid size than bugs collected at goat and/or pig corrals by the end of summer 2000 for both sexes. Conversely, male bugs collected from domiciles and/or storerooms had significantly smaller centroid size than bugs collected from pig corrals in spring 2002. The inversion in wing centroid size between seasons was consistent between sexes. Wing shape analysis from the south-central extreme of the study village showed divergence between collection dates for both sexes. Wing shape divergence was highly significant between male bugs collected by the end of summer 2000 and those collected in spring 2002 and by the end of summer 2003. For females, wing shape divergence was marginally significant between the end of summer 2000 and spring 2002, and significant between spring 2002 and the end of summer 2003. Unlike season-related variations in wing centroid size, shape differentiation was related to the time period elapsed between sample collections and suggested genetic influences acting on shape. Simultaneous consideration of wing size and shape provided complementary information on the direction and timing of bug dispersal. Morphological studies may allow determining the degree of relatedness of different bug populations and to associate morphological heterogeneity with temporal patterns of reinfestation.


Assuntos
Estações do Ano , Triatoma/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Animais , Argentina , Biometria , Feminino , Masculino
18.
Infect Genet Evol ; 70: 197-207, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30851461

RESUMO

In medical entomology, as well as in many other groups of arthropods, geometric morphometrics has become a powerful tool for species identification and population characterization. The approach lies on the relative position of some anatomical points (landmarks) or, more recently, of curved features (semilandmarks). Landmarks are described by coordinates of points easy to recognize from one individual to another. According to this criterion decreasing levels of homology have been recognized, going from strong (type I) to weak (type III landmarks). Semilandmarks (or sliding landmarks) are points having poor homology like landmarks III, but making it possible to capture curves or surfaces where landmarks are sparse. Their use is becoming increasingly routine. Superimposition of semilandmarks differ from what is currently applied to landmarks, ways and tools for collecting them may also differ from collecting landmarks. They can be collected by simply digitizing points along a curve or a surface but can also be collected in a more systematic way by the use of a template. In the CLIC package (https://xyom-clic.eu), as well as in the XYOM software (https://xyom.io), we created an algorithm-based template to both collect and align semilandmarks or landmarks III. The use of such template for the final alignment of these special points represents an original approach, so that a comprehensive explanation is required. Using a published example, we compare in details the results of our method with the ones produced by the currently applied approaches. A close parallelism of information is found. The specificities and limitations of our method are discussed.


Assuntos
Classificação/métodos , Entomologia/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Humanos , Software
19.
Infect Genet Evol ; 70: 189-196, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30794886

RESUMO

XYOM, for XY Online Morphometrics, is an online implementation of the geometric morphometric (GM) approach. It is a platform-independent product, and is presented here as an optional alternative software to client side morphometrics software. From the point of view of the user, the interesting features of a web application are: no download, no installation, no configuration, and automatic updating. Because XYOM is accessible through a standard web interface, it is expected to allow an easier and faster learning process. Additional benefits are that users will have their own highly secured cloud storage, with a 24/7 access from any device, allowing users to share their data, export/download them into their device. Ideally, there would be a permanent, anywhere anytime access on any device (computer, tablet, smartphone, etc). Using modern web browsers, XYOM allows online 2D images digitization of either landmarks, semilandmarks or pseudolandmarks (contours), and develops corresponding statistical analyses. In its present configuration, XYOM is dedicated to the identification and characterization of organismal forms.


Assuntos
Biologia Computacional/métodos , Computação em Nuvem , Software
20.
Acta Trop ; 192: 66-74, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30710534

RESUMO

Members of the Maculatus group are important malaria vectors in the border regions of Thailand. However, the role of each species in malaria transmission remains unclear because of their highly similar morphologies, making them difficult to be differentiated. Whereas An. pseudowillmori may be identified by the color pattern of some scales on abdomen and wings, the distinction between An. maculatus and An. sawadwongporni relies on the wings only. Scales are labile structures, as they may be accidentally removed during capture and transportation to the laboratory. To discriminate among the species of this group, we tested the suitability of geometric techniques. Shape variables were used as input for discriminant analyses and validated reclassification. Both landmark- and outline-based geometric techniques disclosed significant differences between the three species. For the delicate An. maculatus - An. sawadwongporni distinction, the outline-based approach appeared as the most promising, with validated reclassification scores reaching 93%, as compared to 77% obtained by landmark data. For An. pseudowillmori, reclassification scores were 100% and 94%, respectively. Geometric morphometrics may provide an alternative and useful complement for discriminating members of the Maculatus group.


Assuntos
Anopheles/classificação , Mosquitos Vetores/classificação , Animais , Tailândia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa