Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 464(7291): 999-1005, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20393555

RESUMO

Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not present in the primary tumour, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary tumours may arise from a minority of cells within the primary tumour.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Neoplasias da Mama/genética , Genoma Humano/genética , Mutação/genética , Transplante de Neoplasias , Adulto , Neoplasias da Mama/patologia , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA , Progressão da Doença , Feminino , Frequência do Gene/genética , Genômica , Humanos , Translocação Genética/genética , Transplante Heterólogo , alfa Catenina/genética
2.
N Engl J Med ; 361(11): 1058-66, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19657110

RESUMO

BACKGROUND: The full complement of DNA mutations that are responsible for the pathogenesis of acute myeloid leukemia (AML) is not yet known. METHODS: We used massively parallel DNA sequencing to obtain a very high level of coverage (approximately 98%) of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome. RESULTS: We identified 12 acquired (somatic) mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS and NPM1 had been identified previously in patients with AML, but two other mutations had not been identified. One of these mutations, in the IDH1 gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; we detected it in one additional AML tumor. The AML genome that we sequenced contains approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis. CONCLUSIONS: By comparing the sequences of tumor and skin genomes of a patient with AML-M1, we have identified recurring mutations that may be relevant for pathogenesis.


Assuntos
Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/genética , Mutação , Adulto , Análise Mutacional de DNA , Feminino , Frequência do Gene , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , Nucleofosmina , Mutação Puntual , Análise de Sequência de DNA/métodos
3.
J Clin Invest ; 121(4): 1445-55, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21436584

RESUMO

Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML). It is characterized by the t(15;17)(q22;q11.2) chromosomal translocation that creates the promyelocytic leukemia-retinoic acid receptor α (PML-RARA) fusion oncogene. Although this fusion oncogene is known to initiate APL in mice, other cooperating mutations, as yet ill defined, are important for disease pathogenesis. To identify these, we used a mouse model of APL, whereby PML-RARA expressed in myeloid cells leads to a myeloproliferative disease that ultimately evolves into APL. Sequencing of a mouse APL genome revealed 3 somatic, nonsynonymous mutations relevant to APL pathogenesis, of which 1 (Jak1 V657F) was found to be recurrent in other affected mice. This mutation was identical to the JAK1 V658F mutation previously found in human APL and acute lymphoblastic leukemia samples. Further analysis showed that JAK1 V658F cooperated in vivo with PML-RARA, causing a rapidly fatal leukemia in mice. We also discovered a somatic 150-kb deletion involving the lysine (K)-specific demethylase 6A (Kdm6a, also known as Utx) gene, in the mouse APL genome. Similar deletions were observed in 3 out of 14 additional mouse APL samples and 1 out of 150 human AML samples. In conclusion, whole genome sequencing of mouse cancer genomes can provide an unbiased and comprehensive approach for discovering functionally relevant mutations that are also present in human leukemias.


Assuntos
Leucemia Promielocítica Aguda/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , DNA de Neoplasias/genética , Progressão da Doença , Humanos , Janus Quinase 1/genética , Histona Desmetilases com o Domínio Jumonji/genética , Leucemia Experimental/genética , Camundongos , Camundongos da Linhagem 129 , Dados de Sequência Molecular , Mutação , Proteínas de Fusão Oncogênica/genética , Polimorfismo de Nucleotídeo Único , Deleção de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa