Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Int J Obes (Lond) ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615158

RESUMO

BACKGROUND/AIMS: Coronary heart disease morbidity and mortality are higher in people of South Asian origin than in those of African origin. We investigated whether as young adults without diabetes, people in Mauritius of South Asian descent (Indians) would show a more adverse cardiovascular risk profile that those of predominantly African descent (Creoles), and whether this could be explained by ethnic differences in visceral adiposity or other fat distribution patterns. METHODS: The study was conducted in 189 young non-physically active adults, with the following measurements conducted after an overnight fast: anthropometry (weight, height, waist circumference), whole-body and regional body composition by dual-energy x-ray absorptiometry, blood pressure, and blood assays for glycemic (glucose and HbA1c) and lipid profile (triglycerides and cholesterols). RESULTS: The results indicate higher serum triglycerides and lower HDL cholesterol in men than in women, and in Indians than in Creoles (p < 0.001). No significant differences due to sex or ethnicity are observed in body mass index and waist circumference, but indices of visceral adiposity (visceral/android, visceral/subcutaneous) and visceral-to-peripheral adiposity ratio (visceral/gynoid, visceral/limb) were significantly higher in men than in women, and in Indians than in Creoles. The significant effects of sex and ethnicity on blood lipid profile were either completely abolished or reduced to a greater extent after adjusting for the ratio of visceral-to-peripheral adiposity than for visceral adiposity per se. CONCLUSIONS: In young adults in Mauritius, Indians show a more adverse pattern of body fat distribution and blood lipid risk profile than Creoles. Differences in their fat distribution patterns, however, only partially explain their differential atherogenic lipid risk profile, amid a greater impact of visceral-to-peripheral adiposity ratio than that of visceral adiposity per se on sex and ethnic differences in cardiovascular risks; the former possibly reflecting the ratio of hazardous (visceral) adiposity and protective (peripheral) superficial subcutaneous adiposity.

2.
Br J Nutr ; 124(5): 481-492, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31902380

RESUMO

It is increasingly recognised that the use of BMI cut-off points for diagnosing obesity (OB) and proxy measures for body fatness in a given population needs to take into account the potential impact of ethnicity on the BMI-fat % relationship in order to avoid adiposity status misclassification. This relationship was studied here in 377 Mauritian schoolchildren (200 boys and 177 girls, aged 7-13 years) belonging to the two main ethnic groups: Indian (South Asian descent) and Creole (African/Malagasy descent), with body composition assessed using an isotopic 2H dilution technique as reference. The results indicate that for the same BMI, Indians have more body fat (and less lean mass) than Creoles among both boys and girls: linear regression analysis revealed significantly higher body fat % by 4-5 units (P < 0·001) in Indians than in Creoles across a wide range of BMI (11·6-34·2 kg/m2) and body fat % (5-52 %). By applying Deurenberg's Caucasian-based equation to predict body fat % from WHO-defined BMI thresholds for overweight (OW) and OB, and by recalculating the equivalent BMI values using a Mauritian-specific equation, it is shown that the WHO BMI cut-offs for OB and OW would need to be lowered by 4·6-5·9 units in Indian and 2·0-3·7 units in Creole children in the 7-13-year-old age group. These results have major implications for ethnic-based population research towards improving the early diagnosis of excess adiposity in this multi-ethnic population known to be at high risk for later development of type 2 diabetes and CVD.


Assuntos
Composição Corporal , Índice de Massa Corporal , Etnicidade , Obesidade/diagnóstico , Sobrepeso/diagnóstico , População Urbana , Adolescente , África/etnologia , Criança , Feminino , Humanos , Índia/etnologia , Masculino , Maurício
3.
Am J Physiol Endocrinol Metab ; 317(4): E699-E709, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31430205

RESUMO

The recovery of body weight after substantial weight loss or growth retardation is often characterized by a disproportionately higher rate of fat mass vs. lean mass recovery, with this phenomenon of "preferential catch-up fat" being contributed by energy conservation (thrifty) metabolism. To test the hypothesis that a low core body temperature (Tc) constitutes a thrifty metabolic trait underlying the high metabolic efficiency driving catch-up fat, the Anipill system, with telemetry capsules implanted in the peritoneal cavity, was used for continuous monitoring of Tc for several weeks in a validated rat model of semistarvation-refeeding in which catch-up fat is driven solely by suppressed thermogenesis. In animals housed at 22°C, 24-h Tc was reduced in response to semistarvation (-0.77°C, P < 0.001) and remained significantly lower than in control animals during the catch-up fat phase of refeeding (-0.27°C on average, P < 0.001), the lower Tc during refeeding being more pronounced during the light phase than during the dark phase of the 24-h cycle (-0.30°C vs. -0.23°C, P < 0.01) and with no between-group differences in locomotor activity. A lower 24-h Tc in animals showing catch-up fat was also observed when the housing temperature was raised to 29°C (i.e., at thermoneutrality). The reduced energy cost of homeothermy in response to caloric restriction persists during weight recovery and constitutes a thrifty metabolic trait that contributes to the high metabolic efficiency that underlies the rapid restoration of the body's fat stores during weight regain, with implications for obesity relapse after therapeutic slimming and the pathophysiology of catch-up growth.


Assuntos
Temperatura Corporal , Restrição Calórica , Aumento de Peso/fisiologia , Animais , Composição Corporal/fisiologia , Metabolismo Energético/fisiologia , Masculino , Atividade Motora , Ratos , Ratos Sprague-Dawley , Temperatura , Termogênese/fisiologia , Redução de Peso
4.
Eur J Nutr ; 56(6): 2105-2113, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27328681

RESUMO

PURPOSE: There is increasing interest into the potentially beneficial effects of galactose for obesity and type 2 diabetes management as it is a low-glycemic sugar reported to increase satiety and fat mobilization. However, fructose is also a low-glycemic sugar but with greater blood pressure elevation effects than after glucose ingestion. Therefore, we investigated here the extent to which the ingestion of galactose, compared to glucose and fructose, impacts upon haemodynamics and blood pressure. METHODS: In a randomized cross-over study design, 9 overnight-fasted young men attended 3 separate morning sessions during which continuous cardiovascular monitoring was performed at rest for at least 30 min before and 120 min after ingestion of 500 mL of water containing 60 g of either glucose, fructose or galactose. These measurements included beat-to-beat systolic and diastolic blood pressure, heart rate deduced by electrocardiography, and stroke volume derived by impedance cardiography; these measurements were used to calculate cardiac output and total peripheral resistance. RESULTS: Ingestion of galactose, like glucose, led to significantly lesser increases in systolic, diastolic and mean blood pressure than fructose ingestion (p < 0.05). Furthermore, the increase in cardiac output and reduction in total peripheral resistance observed after ingestion of glucose were markedly lower after galactose ingestion (p < 0.01). CONCLUSIONS: Galactose thus presents the interesting characteristics of a low-glycemic sugar with mild cardiovascular effects. Further studies are warranted to confirm the clinical relevance of the milder cardiovascular effects of galactose than other sugars for insulin resistant obese and/or diabetic patients with cardiac insufficiency.


Assuntos
Bebidas , Fenômenos Fisiológicos Cardiovasculares , Açúcares da Dieta/administração & dosagem , Frutose/administração & dosagem , Galactose/administração & dosagem , Adulto , Glicemia/metabolismo , Pressão Sanguínea , Índice de Massa Corporal , Peso Corporal , Estudos Cross-Over , Diabetes Mellitus Tipo 2/sangue , Açúcares da Dieta/sangue , Feminino , Frutose/sangue , Galactose/sangue , Frequência Cardíaca , Hemodinâmica , Humanos , Insulina/sangue , Masculino , Obesidade/sangue , Tamanho da Amostra , Acidente Vascular Cerebral/sangue , Adulto Jovem
5.
Eur J Appl Physiol ; 117(4): 795-807, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28260201

RESUMO

PURPOSE: Due to sedentarity-associated disease risks, there is much interest in methods to increase low-intensity physical activity. In this context, it is widely assumed that altering posture allocation can modify energy expenditure (EE) to impact body-weight regulation and health. However, we have recently shown the existence of two distinct phenotypes pertaining to the energy cost of standing-with most individuals having no sustained increase in EE during steady-state standing relative to sitting comfortably. Here, we investigated whether these distinct phenotypes are related to the presence/absence of spontaneous "weight-shifting", i.e. the redistribution of body-weight from one foot to the other. METHODS: Using indirect calorimetry to measure EE in young adults during sitting and 10 min of steady-state standing, we examined: (i) heterogeneity in EE during standing (n = 36); (ii) EE and spontaneous weight-shifting patterns (n = 18); (iii) EE during spontaneous weight-shifting versus experimentally induced weight-shifting (n = 7), and; (iv) EE during spontaneous weight-shifting versus intermittent leg/body displacement (n = 6). RESULTS: Despite heterogeneity in EE response to steady-state standing, no differences were found in the amount or pattern of spontaneous weight-shifting between the two phenotypes. Whilst experimentally induced weight-shifting resulted in a mean EE increase of only 11% (range: 0-25%), intermittent leg/body displacement increased EE to >1.5 METs in all participants. CONCLUSIONS: Although the variability in spontaneous weight-shifting signatures between individuals does not appear to underlie heterogeneity in the energy cost of standing posture maintenance, these studies underscore the fact that leg/body displacement, rather than standing posture alone, is needed to increase EE above the currently defined sedentary threshold.


Assuntos
Metabolismo Energético , Postura , Adulto , Peso Corporal , Feminino , Humanos , Masculino , Fenótipo , Equilíbrio Postural/fisiologia , Comportamento Sedentário
6.
Eur J Nutr ; 53(7): 1561-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24474552

RESUMO

PURPOSE: Energy drinks are beverages containing vasoactive metabolites, usually a combination of caffeine, taurine, glucuronolactone and sugars. There are concerns about the safety of energy drinks with some countries banning their sales. We determined the acute effects of a popular energy drink, Red Bull, on cardiovascular and hemodynamic variables, cerebrovascular parameters and microvascular endothelial function. METHODS: Twenty-five young non-obese and healthy subjects attended two experimental sessions on separate days according to a randomized crossover study design. During each session, primary measurements included beat-to-beat blood pressure measurements, impedance cardiography and transcranial Doppler measurements for at least 20 min baseline and for 2 h following the ingestion of either 355 mL of the energy drink or 355 mL of tap water; the endothelial function test was performed before and two hours after either drink. RESULTS: Unlike the water control load, Red Bull consumption led to increases in both systolic and diastolic blood pressure (p < 0.005), associated with increased heart rate and cardiac output (p < 0.05), with no significant changes in total peripheral resistance and without diminished endothelial response to acetylcholine; consequently, double product (reflecting myocardial load) was increased (p < 0.005). Red Bull consumption also led to increases in cerebrovascular resistance and breathing frequency (p < 0.005), as well as to decreases in cerebral blood flow velocity (p < 0.005) and end-tidal carbon dioxide (p < 0.005). CONCLUSION: Our results show an overall negative hemodynamic profile in response to ingestion of the energy drink Red Bull, in particular an elevated blood pressure and double product and a lower cerebral blood flow velocity.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Bebidas Energéticas , Hemodinâmica/efeitos dos fármacos , Adulto , Estatura , Peso Corporal , Estudos Cross-Over , Feminino , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
7.
Proc Natl Acad Sci U S A ; 108(42): E854-63, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21949398

RESUMO

Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications.


Assuntos
Tecido Adiposo Branco/enzimologia , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Resistência à Insulina/fisiologia , Obesidade/enzimologia , Termogênese/fisiologia , Animais , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/enzimologia , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Inflamação/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Obesidade/etiologia , Obesidade/prevenção & controle , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Esterol Esterase/metabolismo , Magreza/enzimologia
8.
Obesity (Silver Spring) ; 31(5): 1179-1182, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37140404

RESUMO

The concept of dual-adaptive thermogenesis underlying metabolic adaptation to prolonged energy deficit posits that there are two control systems that govern energy sparing: a rapid-reacting system to energy deficit and a slow-reacting system to fat store depletion. The latter control system, referred to as the "adipose-specific" control of thermogenesis, contributes to accelerating fat store replenishment (catch-up fat) during weight regain. The case is put forward here that, whereas adaptive thermogenesis during weight loss results primarily from central suppression of the sympathetic nervous system and hypothalamic-pituitary-thyroid axis, during weight regain it operates primarily through peripheral tissue resistance to the actions of this neurohormonal network. Emerging evidence that altered deiodination of thyroid hormones within the skeletal muscle and liver is a key determinant of such peripheral resistance therefore offers entry points toward elucidating the molecular mechanisms that underlie the adipose-specific control of thermogenesis and unraveling tissue-specific targets to counter obesity recidivism.


Assuntos
Tecido Adiposo , Metabolismo Energético , Humanos , Tecido Adiposo/metabolismo , Metabolismo Energético/fisiologia , Obesidade/metabolismo , Aumento de Peso , Hormônios Tireóideos/metabolismo , Termogênese/fisiologia
9.
Br J Nutr ; 108(4): 655-65, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22085624

RESUMO

The present study investigated the effect of 2 weeks of energy restriction on whole body, liver and skeletal muscle energy handling. We measured whole-body oxygen consumption, as well as mitochondrial protein mass, respiratory capacity and energetic coupling in liver and skeletal muscle from food-restricted (FR) rats, age- and weight-matched controls. We also assessed markers of oxidative damage and antioxidant defences. The present results show that, in response to energy restriction, an adaptive decrease in whole-body energy expenditure is coupled with structural and functional changes in mitochondrial compartment, both in liver and skeletal muscle. In fact, liver mitochondrial mass per g of liver significantly increased, whereas total hepatic mitochondrial oxidative capacity was lower in FR than in control rats, because of a significant decrease in liver contribution to total body weight. In skeletal muscle, sub-sarcolemmal (SS) mitochondrial respiratory capacity, as well as SS and inter-myofibrillar (IMF) mitochondrial protein mass per g of tissue, was significantly lower in FR rats, compared to controls. Finally, a decrease in oxidative damage was found in liver but not in skeletal muscle mitochondria from FR rats, whereas an increase in antioxidant defence was found in both tissues. From the present results, it appears that skeletal muscle is involved in the decrease in energy expenditure induced by energy restriction. Energy sparing is achieved through changes in the activity (SS), mass (SS and IMF) and efficiency (IMF) of mitochondrial compartment.


Assuntos
Restrição Calórica , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Aconitato Hidratase/metabolismo , Animais , Restrição Calórica/efeitos adversos , Dióxido de Carbono/metabolismo , Citocromos c/metabolismo , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Peroxidação de Lipídeos , Fígado/anatomia & histologia , Fígado/enzimologia , Fígado/metabolismo , Masculino , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/enzimologia , Tamanho do Órgão , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
10.
Br J Nutr ; 105(12): 1750-63, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21281526

RESUMO

The present study investigates whether excessive fat accumulation and hyperinsulinaemia during catch-up growth on high-fat diets are altered by n-6 and n-3 PUFA derived from oils rich in either linoleic acid (LA), α-linolenic acid (ALA), arachidonic acid (AA) or DHA. It has been shown that, compared with food-restricted rats refed a high-fat (lard) diet low in PUFA, those refed isoenergetically on diets enriched in LA or ALA, independently of the n-6:n-3 ratio, show improved insulin sensitivity, lower fat mass and higher lean mass, the magnitude of which is related to the proportion of total PUFA precursors (LA+ALA) consumed. These relationships are best fitted by quadratic regression models (r2>0·8, P < 0·001), with threshold values for an impact on body composition corresponding to PUFA precursors contributing 25-30 % of energy intake. Isoenergetic refeeding on high-fat diets enriched in AA or DHA also led to improved body composition, with increases in lean mass as predicted by the quadratic model for PUFA precursors, but decreases in fat mass, which are disproportionately greater than predicted values; insulin sensitivity, however, was not improved. These findings pertaining to the impact of dietary intake of PUFA precursors (LA and ALA) and their elongated-desaturated products (AA and DHA), on body composition and insulin sensitivity, provide important insights into the search for diets aimed at counteracting the pathophysiological consequences of catch-up growth. In particular, diets enriched in essential fatty acids (LA and/or ALA) markedly improve insulin sensitivity and composition of weight regained, independently of the n-6:n-3 fatty acid ratio.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Ácidos Docosa-Hexaenoicos/uso terapêutico , Alimentos Fortificados , Resistência à Insulina/fisiologia , Ácido Linoleico/uso terapêutico , Desnutrição/dietoterapia , Ácido alfa-Linolênico/uso terapêutico , Análise de Variância , Animais , Ácidos Araquidônicos/análise , Composição Corporal/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/análise , Teste de Tolerância a Glucose , Ácido Linoleico/análise , Ratos , Ratos Sprague-Dawley , Síndrome da Realimentação/dietoterapia , Síndrome da Realimentação/prevenção & controle , Análise de Regressão , Ácido alfa-Linolênico/análise
11.
Obes Rev ; 22 Suppl 2: e13189, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33543573

RESUMO

Since its publication in 1950, the Biology of Human Starvation, which describes the classic longitudinal Minnesota Experiment of semistarvation and refeeding in healthy young men, has been the undisputed source of scientific reference about the impact of long-term food deprivation on human physiology and behavior. It has been a guide in developing famine and refugee relief programs for international agencies, in exploring the effects of food deprivation on the cognitive and social functioning of those with anorexia nervosa and bulimia nervosa, and in gaining insights into metabolic adaptations that undermine obesity therapy and cachexia rehabilitation. In more recent decades, the application of a systems approach to the analysis of its data on longitudinal changes in body composition, basal metabolic rate, and food intake during the 24 weeks of semistarvation and 20 weeks of refeeding has provided rare insights into the multitude of control systems that govern the regulation of body composition during weight regain. These have underscored an internal (autoregulatory) control of lean-fat partitioning (highly sensitive to initial adiposity), which operates during weight loss and weight regain and revealed the existence of feedback loops between changes in body composition and the control of food intake and adaptive thermogenesis for the purpose of accelerating the recovery of fat mass and fat-free mass. This paper highlights the general features and design of this grueling experiment of simulated famine that has allowed the unmasking of fundamental control systems in human body composition autoregulation. The integration of its outcomes constitutes the "famine reactions" that drive the normal physiology of weight regain and obesity relapse and provides a mechanistic "autoregulation-based" explanation of how dieting and weight cycling, transition to sedentarity, or developmental programming may predispose to obesity. It also provides a system physiology framework for research toward elucidating proteinstatic and adipostatic mechanisms that control hunger-appetite and adaptive thermogenesis, with major implications for a better understanding (and management) of cachexia, obesity, and cardiometabolic diseases.


Assuntos
Tecido Adiposo , Inanição , Tecido Adiposo/metabolismo , Composição Corporal , Peso Corporal , Metabolismo Energético , Humanos , Masculino , Minnesota , Termogênese , Aumento de Peso
12.
Obes Rev ; 22 Suppl 2: e13197, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33471425

RESUMO

It is now recognized that the amount and type of dietary fat consumed play an important role in metabolic health. In humans, high intake of polyunsaturated fatty acids (PUFAs) has been associated with reductions in cardiovascular disease risk, improvements in glucose homeostasis, and changes in body composition that involve reductions in central adiposity and, more recently, increases in lean body mass. There is also emerging evidence, which suggests that high intakes of the plant-based essential fatty acids (ePUFAs)-n-6 linoleic acid (LA) and n-3 α-linolenic acid (ALA)-have a greater impact on body composition (fat mass and lean mass) and on glucose homeostasis than the marine-derived long-chain n-3 PUFA-eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In addition, high intake of both ePUFAs (LA and ALA) may also have anti-inflammatory effects in humans. The purpose of this review is to highlight the emerging evidence, from both epidemiological prospective studies and clinical intervention trials, of a role for PUFA, in particular ePUFA, in the long-term regulation of body weight and body composition, and their impact on cardiometabolic health. It also discusses current notions about the mechanisms by which PUFAs modulate fat mass and lean mass through altered control of energy intake, thermogenesis, or lean-fat partitioning.


Assuntos
Doenças Cardiovasculares , Ácidos Graxos Ômega-3 , Composição Corporal , Doenças Cardiovasculares/prevenção & controle , Ácidos Graxos , Ácidos Graxos Insaturados , Humanos , Estudos Prospectivos , Ácido alfa-Linolênico
13.
Obes Rev ; 22 Suppl 2: e13195, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33471427

RESUMO

The most appropriate type of diets to maintain or lose body weight over the medium to long term has been a matter of controversy and debates for more than half a century. Both voluntarily and coercive food restriction, resulting in negative energy and macronutrient balance and hence weight loss, have not been designed to be maintained for the long term. By contrast, when a classical and traditional type of alimentation is consumed in ad lib conditions (e.g., the Mediterranean "diet"), it generally provides an appropriate nutritional density of essential macronutrients and micronutrients; it is hence appropriate for long-term use, and it provides several benefits for health if the compliance of the individuals is maintained over time. In this short review, we focus on four specific aspects: first, the need to agree on a clear definition of what is "low" versus "high" in terms of total carbohydrate intake and total fat intakes, both generally inversely related, in a representative individual with a certain lifestyle and a certain body morphology; second, the importance of discussing the duration over which it could be prescribed, that is, acute versus chronic conditions, focusing on the comparison between the fashion and often ephemeral low-carbohydrate diet (acute) with the well-recognized traditional Mediterranean type of alimentation (chronic), which includes lifestyle changes; third, the particular metabolic characteristics induced by the low-carbohydrate (high fat) diet, namely, the scramble up of ketone bodies production. The recent debate on ketogenic diets concern whether or not, in iso-energetic conditions, low-carbohydrate diets would significantly enhance energy expenditure. This is an issue that is more "academic" than practical, on the ground that the putative difference of 100-150 kcal/day or so (in the recent studies) is not negligible but within the inherent error of the methodology used to track total energy expenditure in free living conditions by the doubly labeled water technique. Fourth, the potential medical risks and shortcomings of ingesting (over the long term) low-carbohydrate ketogenic diets could exacerbate underlying renal dysfunction, consecutive to the joint combination of high-fat, high-protein diets, particularly in individuals with obesity. This particular diet promotes metabolic acidosis and renal hyperfiltration, which ultimately may contribute to a significant reduction in life expectancy in middle-age people.


Assuntos
Dieta Cetogênica , Dieta com Restrição de Carboidratos , Carboidratos da Dieta , Gorduras na Dieta , Humanos , Corpos Cetônicos , Pessoa de Meia-Idade , Redução de Peso
14.
Obes Rev ; 22 Suppl 2: e13193, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33527617

RESUMO

Several areas of research into the prevention and treatment of obesity today can be traced to one or more of the scientific works pioneered by Ancel Keys between the 1930s to 1970s in fields that cut across the physiology of extremes and public health nutrition. These range from his classical studies into how body and mind respond to chronic exposure to hypoxia in "The Physiology of Life at High Altitudes" or to simulated famine under controlled laboratory conditions in "The Biology of Human Starvation", the impact of diet and lifestyle on cardiovascular morbidity and mortality in "The Seven Countries Study," to the "Indices of Relative Weight and Obesity" in which he identified what has since been the most widely utilized diagnostic tool to monitor obesity across populations worldwide and which he coined as the body mass index. The contribution of Ancel Keys to medical sciences through his observations, analytical approaches, and research output of his classic studies, and how these have (and continue) to impact on a plethora of current concepts in obesity research today, are embodied in the eight review articles that constitute this supplement reporting the proceedings of the 10th Fribourg Obesity Research Conference. The aim of this introductory paper is to put into perspective the legacy of Ancel Keys to current concepts that are encapsulated in these review articles that cover research areas that include (i) the diagnosis of obesity for health risks; (ii) the role of dietary fat types in the pathogenesis of obesity and cardiometabolic diseases; (iii) the rationale, efficacy and safety of low carbohydrate ketogenic diets, or the therapeutic potential of hypoxic conditioning, in weight management programs; (iv) the psychological and physiological basis of the "famine reaction" that counters therapeutic dieting and facilitates weight regain; and (v) the potential impact of weight cycling and yoyo dieting on risks for later obesity and cardiometabolic diseases.


Assuntos
Doenças Cardiovasculares , Obesidade , Índice de Massa Corporal , Doenças Cardiovasculares/etiologia , Dieta , Humanos , Estilo de Vida
15.
Nutr Diabetes ; 11(1): 4, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414371

RESUMO

BACKGROUND/OBJECTIVES: Catch-up growth, an important risk factor for later obesity and type 2 diabetes, is often characterized by a high rate of fat deposition associated with hyperinsulinemia and glucose intolerance. We tested here the hypothesis that refeeding on a high-fat diet rich in essential polyunsaturated fatty acids (ePUFA) improves glucose homeostasis primarily by enhancing insulin sensitivity in skeletal muscles and adipose tissues. METHODS: Rats were caloric restricted for 2 weeks followed by 1-2 weeks of isocaloric refeeding on either a low-fat (LF) diet, a high-fat (HF) diet based on animal fat and high in saturated and monounsaturated fatty acids (HF SMFA diet), or a HF diet based on vegetable oils (1:1 mixture of safflower and linseed oils) and rich in the essential fatty acids linoleic and α-linolenic acids (HF ePUFA diet). In addition to measuring body composition and a test of glucose tolerance, insulin sensitivity was assessed during hyperinsulinemic-euglycemic clamps at the whole-body level and in individual skeletal muscles and adipose tissue depots. RESULTS: Compared to animals refed the LF diet, those refed the HF-SMFA diet showed a higher rate of fat deposition, higher plasma insulin and glucose responses during the test of glucose tolerance, and markedly lower insulin-stimulated glucose utilization at the whole body level (by a-third to a-half) and in adipose tissue depots (by 2-5 folds) during insulin clamps. While refeeding on the ePUFA diet prevented the increases in fat mass and in plasma insulin and glucose, the results of insulin clamps revealed that insulin-stimulated glucose utilization was not increased in skeletal muscles and only marginally higher in adipose tissues and at the whole-body level. CONCLUSIONS: These results suggest only a minor role for enhanced insulin sensitivity in the mechanisms by which diets high in ePUFA improves glucose homeostasis during catch-up growth.


Assuntos
Tecido Adiposo/metabolismo , Glicemia/metabolismo , Dieta Hiperlipídica/métodos , Ácidos Graxos Insaturados/administração & dosagem , Resistência à Insulina , Músculo Esquelético/metabolismo , Animais , Peso Corporal , Dieta com Restrição de Gorduras , Gorduras na Dieta/administração & dosagem , Glucose/metabolismo , Técnica Clamp de Glucose , Intolerância à Glucose/metabolismo , Teste de Tolerância a Glucose , Homeostase , Hiperinsulinismo/metabolismo , Insulina/sangue , Masculino , Ratos , Ratos Sprague-Dawley
16.
Front Endocrinol (Lausanne) ; 12: 631176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746903

RESUMO

Refeeding after caloric restriction induces weight regain and a disproportionate recovering of fat mass rather than lean mass (catch-up fat) that, in humans, associates with higher risks to develop chronic dysmetabolism. Studies in a well-established rat model of semistarvation-refeeding have reported that catch-up fat associates with hyperinsulinemia, glucose redistribution from skeletal muscle to white adipose tissue and suppressed adaptive thermogenesis sustaining a high efficiency for fat deposition. The skeletal muscle of catch-up fat animals exhibits reduced insulin-stimulated glucose utilization, mitochondrial dysfunction, delayed in vivo contraction-relaxation kinetics, increased proportion of slow fibers and altered local thyroid hormone metabolism, with suggestions of a role for iodothyronine deiodinases. To obtain novel insights into the skeletal muscle response during catch-up fat in this rat model, the functional proteomes of tibialis anterior and soleus muscles, harvested after 2 weeks of caloric restriction and 1 week of refeeding, were studied. Furthermore, to assess the implication of thyroid hormone metabolism in catch-up fat, circulatory thyroid hormones as well as liver type 1 (D1) and liver and skeletal muscle type 3 (D3) iodothyronine deiodinase activities were evaluated. The proteomic profiling of both skeletal muscles indicated catch-up fat-induced alterations, reflecting metabolic and contractile adjustments in soleus muscle and changes in glucose utilization and oxidative stress in tibialis anterior muscle. In response to caloric restriction, D3 activity increased in both liver and skeletal muscle, and persisted only in skeletal muscle upon refeeding. In parallel, liver D1 activity decreased during caloric restriction, and persisted during catch-up fat at a time-point when circulating levels of T4, T3 and rT3 were all restored to those of controls. Thus, during catch-up fat, a local hypothyroidism may occur in liver and skeletal muscle despite systemic euthyroidism. The resulting reduced tissue thyroid hormone bioavailability, likely D1- and D3-dependent in liver and skeletal muscle, respectively, may be part of the adaptive thermogenesis sustaining catch-up fat. These results open new perspectives in understanding the metabolic processes associated with the high efficiency of body fat recovery after caloric restriction, revealing new implications for iodothyronine deiodinases as putative biological brakes contributing in suppressed thermogenesis driving catch-up fat during weight regain.


Assuntos
Iodeto Peroxidase/metabolismo , Proteômica/métodos , Termogênese/efeitos dos fármacos , Termogênese/fisiologia , Tecido Adiposo , Tecido Adiposo Branco , Animais , Composição Corporal , Restrição Calórica , Metabolismo Energético/fisiologia , Glucose/metabolismo , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Cinética , Fígado/metabolismo , Masculino , Espectrometria de Massas , Contração Muscular , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Ratos , Ratos Sprague-Dawley , Glândula Tireoide/metabolismo , Aumento de Peso
17.
Eur J Clin Nutr ; 74(3): 445-453, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31358885

RESUMO

BACKGROUND/OBJECTIVES: In the tropical island of Mauritius, the rise in obesity has accelerated in the past decades, and could be contributed by low physical activity and increased sedentary behavior. The study objectives were to generate the first dataset of total energy expenditure (TEE), to estimate physical activity in Mauritian children, and to explore differences due to gender and ethnicity. SUBJECTS/METHODS: The doubly labeled water (DLW) technique was used to evaluate TEE over 14 days in 56 Mauritian school children (aged 7-11 years) belonging to the two main ethnic groups: Indian (South Asian descent) and Creole (African/Malagasy descent). Physical activity level (PAL) was calculated as the ratio of TEE and resting energy expenditure (using Schofield equations), and daily step counts were measured by accelerometry. Anthropometry and body composition were also assessed. RESULTS: TEE measured by DLW was lower in Mauritian children (by ~155 kcal/d) than that predicted using FAO/WHO/UNU equations for children of the same sex, age, and body size. Furthermore, TEE, as well as PAL and step counts, also differed according to gender (lower in girls than in boys) and to ethnicity (lower in Indians than in Creoles) even after adjusting for differences in body weight and body composition. CONCLUSION: These results in Mauritian children provide the first dataset of objectively measured TEE, from which physical activity is estimated as PAL, and complemented by step counts measurements. They suggest potential gender and ethnic differences in TEE and physical activity that need consideration in developing strategies to counter sedentary behavior and obesity.


Assuntos
Etnicidade , Água , Composição Corporal , Criança , Metabolismo Energético , Exercício Físico , Feminino , Humanos , Masculino
18.
Nutrients ; 11(7)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311102

RESUMO

Implementation of efficacious dietary interventions to regulate energy balance requires understanding of the determinants of individual response. To date, information regarding individual variability in response to elevated meal protein content is lacking. This study investigates whether sex and/or oral contraceptive pill (OCP) use play a role in the response to elevated meal protein in 21 healthy young adults (seven men, seven women not taking OCP, and seven women who were OCP users). Participants consumed each of three standardized isocaloric (590 kcal) meals of differing protein content (11, 23, 31% kcal protein). Resting energy expenditure (EE), respiratory quotient (RQ), hunger and satiety were measured at baseline (fasting) and during 180 min postprandial. Whilst significant dose-response increases in EE were observed in men, meal protein-induced EE in women without OCP reached a maximum at <23% protein. Women taking OCP reported lower postprandial fullness than women without OCP, despite similar body size, but also, most notably, no significant difference in EE response between any of the meals. Whilst the mechanisms underpinning this thermogenic inflexibility in response across a wide-range (three-fold) of protein meal content require further investigation, this highlights the need for careful consideration of factors that may influence an individual's metabolic response to dietary interventions aimed at optimising postprandial thermogenesis for body weight regulation.


Assuntos
Regulação da Temperatura Corporal , Anticoncepcionais Orais/farmacologia , Proteínas Alimentares/administração & dosagem , Refeições , Período Pós-Prandial , Adulto , Anticoncepcionais Orais/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Adulto Jovem
19.
Artigo em Inglês | MEDLINE | ID: mdl-30873123

RESUMO

Objective: The recovery of body composition after weight loss is characterized by an accelerated rate of fat recovery (preferential catch-up fat) resulting partly from an adaptive suppression of thermogenesis. Although the skeletal muscle has been implicated as an effector site for such thrifty (energy conservation) metabolism driving catch-up fat, the underlying mechanisms remain to be elucidated. We test here the hypothesis that this thrifty metabolism driving catch-up fat could reside in a reduced rate of protein turnover (an energetically costly "futile" cycle) and in altered local thyroid hormone metabolism in skeletal muscle. Methods: Using a validated rat model of semistarvation-refeeding in which catch-up fat is driven solely by suppressed thermogenesis, we measured after 1 week of refeeding in refed and control animals the following: (i) in-vivo rates of protein synthesis in hindlimb skeletal muscles using the flooding dose technique of 13C-labeled valine incorporation in muscle protein, (ii) ex-vivo muscle assay of net formation of thyroid hormone tri-iodothyronine (T3) from precursor hormone thyroxine (T4), and (iii) protein expression of skeletal muscle deiodinases (type 1, 2, and 3). Results: We show that after 1 week of calorie-controlled refeeding, the fractional protein synthesis rate was lower in skeletal muscles of refed animals than in controls (by 30-35%, p < 0.01) despite no between-group differences in the rate of skeletal muscle growth or whole-body protein deposition-thereby underscoring concomitant reductions in both protein synthesis and protein degradation rates in skeletal muscles of refed animals compared to controls. These differences in skeletal muscle protein turnover during catch-up fat were found to be independent of muscle type and fiber composition, and were associated with a slower net formation of muscle T3 from precursor hormone T4, together with increases in muscle protein expression of deiodinases which convert T4 and T3 to inactive forms. Conclusions: These results suggest that diminished skeletal muscle protein turnover, together with altered local muscle metabolism of thyroid hormones leading to diminished intracellular T3 availability, are features of the thrifty metabolism that drives the rapid restoration of the fat reserves during weight regain after caloric restriction.

20.
Best Pract Res Clin Endocrinol Metab ; 22(1): 155-71, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18279786

RESUMO

Catch-up growth early in life (after fetal, neonatal or infantile growth retardation) is a major risk factor for later obesity, type-2 diabetes and cardiovascular diseases. These risks are generally interpreted alongside teleological arguments that environmental exposures which hinder growth early in life lead to programming of 'thrifty mechanisms' that are adaptive during the period of limited nutrient supply (or growth constraint), but which increase risks for diseases during improved nutrition and catch-up growth later in life. This paper addresses this notion of 'thrifty mechanisms' in the light of evidence that catch-up growth is characterized by a disproportionately higher rate of fat gain relative to lean tissue gain, and that such preferential catch-up fat is in part driven by energy conservation mechanisms operating via suppressed thermogenesis. It provides a molecular-physiological framework which integrates emerging insights into mechanisms by which this thrifty 'catch-up fat' phenotype cross-links with insulin and leptin resistance.


Assuntos
Resistência à Insulina , Leptina/metabolismo , Doenças Metabólicas/metabolismo , Tecido Adiposo/metabolismo , Animais , Distribuição da Gordura Corporal , Glucose/metabolismo , Humanos , Lactente , Recém-Nascido de Baixo Peso/crescimento & desenvolvimento , Recém-Nascido de Baixo Peso/metabolismo , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional/crescimento & desenvolvimento , Recém-Nascido Pequeno para a Idade Gestacional/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Termogênese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa