Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Reconstr Microsurg ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106899

RESUMO

BACKGROUND: Vascularized composite allotransplantation (VCA) involves transplanting a functional and anatomically complete tissue graft, such as a hand or face, from a deceased donor to a recipient. Although clinical VCA has resulted in successful outcomes, high rates of acute rejection and increased requirements for immunosuppression have led to significant long-term complications. Of note, immunosuppressed graft recipients are predisposed to infections, organ dysfunction, and malignancies. The long-term success of VCA grafts requires the discovery and implementation of unique approaches that avoid these complications altogether. Here, we describe our surgical technique and initial experience with a reproducible heterotopic porcine VCA model for the preclinical assessment of approaches to improve graft outcomes. METHODS: Six heterotopic porcine allogeneic vertical rectus abdominis myocutaneous flap transplants were performed using Sinclair donors and Yucatan recipients. Immunosuppressive therapy was not used. Each flap was based on the left external iliac vessel system. Animals were followed postoperatively for surgery-related complications. RESULTS: The six pigs underwent successful VCA and were euthanized at the end of the study. Each flap demonstrated complete survival following vessel anastomosis. For the allogeneic recipients, on average, minimal erythema and healthy flap color were observed from postoperative days 1 to 4. There were no surgery-related animal deaths or complications. CONCLUSION: We have developed a reproducible, technically feasible heterotopic porcine VCA model based on the left external iliac vessel system. Our results demonstrate this model's potential to improve VCA graft outcomes by exploring tolerance induction and rejection biomarker discovery in preclinical studies.

2.
J Craniofac Surg ; 30(6): 1915-1919, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30896511

RESUMO

Due to availability and ease of harvest, adipose tissue is a favorable source of progenitor cells in regenerative medicine, but has yet to be optimized for osteogenic differentiation. The purpose of this study was to test cranial bone healing in a surgical defect model utilizing bone morphogenetic protein-9 (BMP-9) transduced immortalized murine adipocyte (iMAD) progenitor cells in a citrate-based, phase-changing, poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN)-gelatin scaffold. Mesenchymal progenitor iMAD cells were transduced with adenovirus expressing either BMP-9 or green fluorescent protein control. Twelve mice underwent craniectomy to achieve a critical-sized cranial defect. The iMAD cells were mixed with the PPCN-gelatin scaffold and injected into the defects. MicroCT imaging was performed in 2-week intervals for 12 weeks to track defect healing. Histologic analysis was performed on skull sections harvested after the final imaging at 12 weeks to assess quality and maturity of newly formed bone. Both the BMP-9 group and control group had similar initial defect sizes (P = 0.21). At each time point, the BMP-9 group demonstrated smaller defect size, higher percentage defect healed, and larger percentage defect change over time. At the end of the 12-week period, the BMP-9 group demonstrated mean defect closure of 27.39%, while the control group showed only a 9.89% defect closure (P < 0.05). The BMP-9-transduced iMADs combined with a PPCN-gelatin scaffold promote in vivo osteogenesis and exhibited significantly greater osteogenesis compared to control. Adipose-derived iMADs are a promising source of mesenchymal stem cells for further studies in regenerative medicine, specifically bone engineering with the aim of potential craniofacial applications.


Assuntos
Adipócitos/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Células-Tronco Mesenquimais/enzimologia , Nanocompostos , Crânio/enzimologia , Animais , Linhagem Celular , Humanos , Metaloproteinase 9 da Matriz/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Osteogênese , Células-Tronco/citologia , Microtomografia por Raio-X
3.
Plast Reconstr Surg Glob Open ; 7(5): e2194, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31333933

RESUMO

The vascular anastomotic coupling device is a widely used and effective aid to reconstructive microsurgery. Although there is a long history of innovators connected with this device, the current design of 6 interdigitating holes and pins was created de novo by a Northwestern medical student in 1960.

4.
Plast Reconstr Surg ; 143(5): 1397-1407, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31033821

RESUMO

BACKGROUND: Autologous bone grafts remain the gold standard for craniofacial reconstruction despite limitations of donor-site availability and morbidity. A myriad of commercial bone substitutes and allografts are available, yet no product has gained widespread use because of inferior clinical outcomes. The ideal bone substitute is both osteoconductive and osteoinductive. Craniofacial reconstruction often involves irregular three-dimensional defects, which may benefit from malleable or customizable substrates. "Hyperelastic Bone" is a three-dimensionally printed synthetic scaffold, composed of 90% by weight hydroxyapatite and 10% by weight poly(lactic-co-glycolic acid), with inherent bioactivity and porosity to allow for tissue integration. This study examines the capacity of Hyperelastic Bone for bone regeneration in a critical-size calvarial defect. METHODS: Eight-millimeter calvarial defects in adult male Sprague-Dawley rats were treated with three-dimensionally printed Hyperelastic Bone, three-dimensionally printed Fluffy-poly(lactic-co-glycolic acid) without hydroxyapatite, autologous bone (positive control), or left untreated (negative control). Animals were euthanized at 8 or 12 weeks postoperatively and specimens were analyzed for new bone formation by cone beam computed tomography, micro-computed tomography, and histology. RESULTS: The mineralized bone volume-to-total tissue volume fractions for the Hyperelastic Bone cohort at 8 and 12 weeks were 74.2 percent and 64.5 percent of positive control bone volume/total tissue, respectively (p = 0.04). Fluffy-poly(lactic-co-glycolic acid) demonstrated little bone formation, similar to the negative control. Histologic analysis of Hyperelastic Bone scaffolds revealed fibrous tissue at 8 weeks, and new bone formation surrounding the scaffold struts by 12 weeks. CONCLUSION: Findings from our study suggest that Hyperelastic Bone grafts are effective for bone regeneration, with significant potential for clinical translation.


Assuntos
Regeneração Óssea , Procedimentos Ortopédicos/métodos , Procedimentos de Cirurgia Plástica/métodos , Crânio/cirurgia , Alicerces Teciduais/química , Animais , Tomografia Computadorizada de Feixe Cônico , Modelos Animais de Doenças , Elasticidade , Humanos , Masculino , Osteogênese , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Impressão Tridimensional , Ratos , Ratos Sprague-Dawley , Crânio/diagnóstico por imagem , Crânio/lesões , Crânio/fisiologia , Resultado do Tratamento , Microtomografia por Raio-X
5.
PLoS One ; 12(3): e0172327, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28249039

RESUMO

Large skeletal defects caused by trauma, congenital malformations, and post-oncologic resections of the calvarium present major challenges to the reconstructive surgeon. We previously identified BMP-9 as the most osteogenic BMP in vitro and in vivo. Here we sought to investigate the bone regenerative capacity of murine-derived calvarial mesenchymal progenitor cells (iCALs) transduced by BMP-9 in the context of healing critical-sized calvarial defects. To accomplish this, the transduced cells were delivered to the defect site within a thermoresponsive biodegradable scaffold consisting of poly(polyethylene glycol citrate-co-N-isopropylacrylamide mixed with gelatin (PPCN-g). A total of three treatment arms were evaluated: PPCN-g alone, PPCN-g seeded with iCALs expressing GFP, and PPCN-g seeded with iCALs expressing BMP-9. Defects treated only with PPCN-g scaffold did not statistically change in size when evaluated at eight weeks postoperatively (p = 0.72). Conversely, both animal groups treated with iCALs showed significant reductions in defect size after 12 weeks of follow-up (BMP9-treated: p = 0.0025; GFP-treated: p = 0.0042). However, H&E and trichrome staining revealed more complete osseointegration and mature bone formation only in the BMP9-treated group. These results suggest that BMP9-transduced iCALs seeded in a PPCN-g thermoresponsive scaffold is capable of inducing bone formation in vivo and is an effective means of creating tissue engineered bone for critical sized defects.


Assuntos
Consolidação da Fratura , Fatores de Diferenciação de Crescimento , Células-Tronco Mesenquimais/metabolismo , Osseointegração , Crânio/lesões , Alicerces Teciduais/química , Transdução Genética , Animais , Linhagem Celular , Gelatina/química , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/biossíntese , Fatores de Diferenciação de Crescimento/genética , Humanos , Camundongos , Polietilenoglicóis/química
6.
Plast Reconstr Surg ; 135(2): 322e-330e, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25626817

RESUMO

BACKGROUND: The authors present a novel mesh suture design aimed at minimizing the early laparotomy dehiscence that drives ventral hernia formation. The authors hypothesized that modulation of the suture-tissue interface through use of a macroporous structure and increased aspect ratio (width-to-height ratio) would decrease the suture pull-through that leads to laparotomy dehiscence. METHODS: Incisional hernias were produced in 30 rats according to an established hernia model. The rat hernias were randomized to repair with either two 5-0 polypropylene sutures or two midweight polypropylene mesh sutures. Standardized photographs were taken before repair and 1 month after repair. Edge-detection software was used to define the border of the hernia defect and calculate the defect area. Histologic analysis was performed on all mesh suture specimens. RESULTS: Seventeen hernias were repaired with mesh sutures and 13 were repaired with conventional sutures. The mean area of the recurrent defects following repair with mesh suture was 177.8 ± 27.1 mm2, compared with 267.3 ± 34.1 mm2 following conventional suture repair. This correlated to a 57.4 percent reduction in defect area after mesh suture repair, compared with a 10.1 percent increase in defect area following conventional suture repair (p < 0.0007). None (zero of 34) of the mesh sutures pulled through the surrounding tissue, whereas 65 percent (17 of 26) of the conventional sutures demonstrated complete pull-through. Excellent fibrocollagenous ingrowth was observed in 13 of 17 mesh suture specimens. CONCLUSIONS: Mesh sutures better resisted suture pull-through than conventional polypropylene sutures. The design elements of mesh sutures may prevent early laparotomy dehiscence by more evenly distributing distracting forces at the suture-tissue interface and permitting tissue incorporation of the suture itself.


Assuntos
Técnicas de Fechamento de Ferimentos Abdominais/instrumentação , Telas Cirúrgicas , Deiscência da Ferida Operatória/cirurgia , Suturas , Parede Abdominal/patologia , Animais , Desenho de Equipamento , Hérnia Ventral/cirurgia , Laparotomia/efeitos adversos , Teste de Materiais , Polipropilenos , Porosidade , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Recidiva , Técnicas de Sutura , Resistência à Tração
7.
Plast Reconstr Surg ; 131(2): 225-234, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23357984

RESUMO

BACKGROUND: Bacterial biofilms, which are critical mediators of chronic wounds, remain difficult to treat with traditional methods. Bacteriophage therapy against biofilm has not been rigorously studied in vivo. The authors evaluate the efficacy of a species-specific bacteriophage against Staphylococcus aureus biofilm-infected wounds using a validated, quantitative, rabbit ear model. METHODS: Six-millimeter dermal punch wounds in New Zealand rabbit ears were inoculated with wild-type or mutant, biofilm-deficient S. aureus. In vivo biofilm was established and maintained using procedures from our previously published wound biofilm model. Wounds were left untreated, or treated every other day with topical S. aureus-specific bacteriophage, sharp débridement, or both. Histologic wound healing and viable bacterial count measurements, and scanning electron microscopy were performed following harvest. RESULTS: Wild-type S. aureus biofilm wounds demonstrated no differences in healing or viable bacteria following bacteriophage application or sharp débridement alone. However, the combination of both treatments significantly improved all measured wound healing parameters (p < 0.05) and reduced bacteria counts (p = 0.03), which was confirmed by scanning electron microscopy. Bacteriophage treatment of biofilm-deficient S. aureus mutant wounds alone also resulted in similar trends for both endpoints (p < 0.05). CONCLUSIONS: Bacteriophages can be an effective topical therapy against S. aureus biofilm-infected wounds in the setting of a deficient (mutant) or disrupted (débridement) biofilm structure. Combination treatment aimed at disturbing the extracellular biofilm matrix, allowing for increased penetration of species-specific bacteriophages, represents a new and potentially effective approach to chronic wound care. These results establish principles for biofilm therapy that may be applied to several different clinical and surgical problems.


Assuntos
Bacteriófagos , Biofilmes , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/terapia , Staphylococcus aureus/fisiologia , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/terapia , Animais , Doença Crônica , Coelhos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa