Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Med Sci ; 18(2): 482-493, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390817

RESUMO

Focused ultrasound (FUS) is used to locally and transiently induce blood-brain barrier (BBB) permeability, allowing targeted drug delivery to the brain. The purpose of the current study is to evaluate the potential of Vasculotide to accelerate the recovery of the BBB following FUS disruption in the TgCRND8 mouse model of amyloidosis, characteristic of Alzheimer's disease (AD). Accelerating the restoration of the BBB post-FUS would represent an additional safety procedure, which could be beneficial for clinical applications. Methods: TgCRND8 mice and their non-transgenic littermates were treated with Vasculotide (250 ng, intraperitoneal) every 48 hours for 3 months. BBB permeability was induced using FUS, in presence of intravenously injected microbubbles, in TgCRND8 and non-transgenic mice, and confirmed at time 0 by MRI enhancement using the contrast agent gadolinium. BBB closure was assessed at 6, 12 and 20 hours by MRI. In a separate cohort of animals, BBB closure was assessed at 24-hours post-FUS using Evans blue injected intravenously and followed by histological evaluation. Results: Chronic Vasculotide administration significantly reduces the ultra-harmonic threshold required for FUS-induced BBB permeability in the TgCRND8 mice. In addition, Vasculotide treatment led to a faster restoration of the BBB following FUS in TgCRND8 mice. BBB closure after FUS is not significantly different between TgCRND8 and non-transgenic mice. BBB permeability was assessed by gadolinium up to 20-hours post-FUS, demonstrating 87% closure in Vasculotide treated TgCRND8 mice, as opposed to 52% in PBS treated TgCRND8 mice, 58% in PBS treated non-transgenic mice, and 74% in Vasculotide treated non-transgenic mice. In both TgCRND8 mice and non-transgenic littermates the BBB was impermeable to Evans blue dye at 24-hours post-FUS. Conclusion: Vasculotide reduces the pressure required for microbubble ultra-harmonic onset for FUS-induced BBB permeability and it accelerates BBB restoration in a mouse model of amyloidosis, suggesting its potential clinical utility to promote vascular health, plasticity and repair in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Ondas Ultrassônicas/efeitos adversos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/efeitos da radiação , Permeabilidade Capilar/efeitos da radiação , Meios de Contraste/administração & dosagem , Modelos Animais de Doenças , Feminino , Humanos , Injeções Intraperitoneais , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Microbolhas
2.
Proc Natl Acad Sci U S A ; 113(9): 2472-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884170

RESUMO

Ligands of the endothelial-enriched tunica interna endothelial cell kinase 2 (Tie2) are markedly imbalanced in severe infections associated with vascular leakage, yet regulation of the receptor itself has been understudied in this context. Here, we show that TIE2 gene expression may constitute a novel vascular barrier control mechanism in diverse infections. Tie2 expression declined rapidly in wide-ranging models of leak-associated infections, including anthrax, influenza, malaria, and sepsis. Forced Tie2 suppression sufficed to attenuate barrier function and sensitize endothelium to permeability mediators. Rapid reduction of pulmonary Tie2 in otherwise healthy animals attenuated downstream kinase signaling to the barrier effector vascular endothelial (VE)-cadherin and induced vascular leakage. Compared with wild-type littermates, mice possessing one allele of Tie2 suffered more severe vascular leakage and higher mortality in two different sepsis models. Common genetic variants that influence TIE2 expression were then sought in the HapMap3 cohort. Remarkably, each of the three strongest predicted cis-acting SNPs in HapMap3 was also associated with the risk of acute respiratory distress syndrome (ARDS) in an intensive care unit cohort of 1,614 subjects. The haplotype associated with the highest TIE2 expression conferred a 28% reduction in the risk of ARDS independent of other major clinical variables, including disease severity. In contrast, the most common haplotype was associated with both the lowest TIE2 expression and 31% higher ARDS risk. Together, the results implicate common genetic variation at the TIE2 locus as a determinant of vascular leak-related clinical outcomes from common infections, suggesting new tools to identify individuals at unusual risk for deleterious complications of infection.


Assuntos
Permeabilidade Capilar , Infecções/fisiopatologia , Receptor TIE-2/genética , Animais , Endotélio Vascular/fisiopatologia , Camundongos
3.
Crit Care ; 21(1): 274, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-29132435

RESUMO

BACKGROUND: Community-acquired pneumonia (CAP) is a significant cause of morbidity and mortality worldwide. Despite effective antimicrobial therapy, CAP can induce pulmonary endothelial hyperpermeability resulting in life-threatening lung failure due to an exaggerated host-pathogen interaction. Treatment of acute lung injury is mainly supportive because key elements of inflammation-induced barrier disruption remain undetermined. Angiopoietin-1 (Ang-1)-mediated Tie2 activation reduces, and the Ang-1 antagonist Ang-2 increases, inflammation and endothelial permeability in sepsis. Vasculotide (VT) is a polyethylene glycol-clustered Tie2-binding peptide that mimics the actions of Ang-1. The aim of our study was to experimentally test whether VT is capable of diminishing pneumonia-induced lung injury. METHODS: VT binding and phosphorylation of Tie2 were analyzed using tryptophan fluorescence spectroscopy and phospho-Tie-2 enzyme-linked immunosorbent assay. Human and murine lung endothelial cells were investigated by immunofluorescence staining and electric cell-substrate impedance sensing. Pulmonary hyperpermeability was quantified in VT-pretreated, isolated, perfused, and ventilated mouse lungs stimulated with the pneumococcal exotoxin pneumolysin (PLY). Furthermore, Streptococcus pneumoniae-infected mice were therapeutically treated with VT. RESULTS: VT showed dose-dependent binding and phosphorylation of Tie2. Pretreatment with VT protected lung endothelial cell monolayers from PLY-induced disruption. In isolated mouse lungs, VT decreased PLY-induced pulmonary permeability. Likewise, therapeutic treatment with VT of S. pneumoniae-infected mice significantly reduced pneumonia-induced hyperpermeability. However, effects by VT on the pulmonary or systemic inflammatory response were not observed. CONCLUSIONS: VT promoted pulmonary endothelial stability and reduced lung permeability in different models of pneumococcal pneumonia. Thus, VT may provide a novel therapeutic perspective for reduction of permeability in pneumococcal pneumonia-induced lung injury.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Fragmentos de Peptídeos/farmacocinética , Animais , Infecções Comunitárias Adquiridas/tratamento farmacológico , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/uso terapêutico , Pneumonia Pneumocócica/tratamento farmacológico , Espectrometria de Fluorescência/métodos , Estatísticas não Paramétricas , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/patogenicidade
5.
Proc Natl Acad Sci U S A ; 109(18): 6993-8, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22509029

RESUMO

Vascular smooth muscle cells (VSMC) have been suggested to arise from various developmental sources during embryogenesis, depending on the vascular bed. However, evidence also points to a common subpopulation of vascular progenitor cells predisposed to VSMC fate in the embryo. In the present study, we use binary transgenic reporter mice to identify a Tie1(+)CD31(dim)vascular endothelial (VE)-cadherin(-)CD45(-) precursor that gives rise to VSMC in vivo in all vascular beds examined. This precursor does not represent a mature endothelial cell, because a VE-cadherin promoter-driven reporter shows no expression in VSMC during murine development. Blockade of Notch signaling in the Tie1(+) precursor cell, but not the VE-cadherin(+) endothelial cell, decreases VSMC investment of developing arteries, leading to localized hemorrhage in the embryo at the time of vascular maturation. However, Notch signaling is not required in the Tie1(+) precursor after establishment of a stable artery. Thus, Notch activity is required in the differentiation of a Tie1(+) local precursor to VSMC in a spatiotemporal fashion across all vascular beds.


Assuntos
Diferenciação Celular/fisiologia , Mioblastos de Músculo Liso/citologia , Mioblastos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neovascularização Fisiológica , Receptores Notch/metabolismo , Animais , Antígenos CD/genética , Artérias/embriologia , Artérias/crescimento & desenvolvimento , Artérias/metabolismo , Sequência de Bases , Caderinas/deficiência , Caderinas/genética , Diferenciação Celular/genética , Primers do DNA/genética , Feminino , Antígenos Comuns de Leucócito/deficiência , Antígenos Comuns de Leucócito/genética , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Gravidez , Receptor de TIE-1/metabolismo , Receptores Notch/antagonistas & inibidores , Transdução de Sinais
6.
Stem Cells ; 31(2): 293-304, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23135963

RESUMO

The clinical application of hematopoietic progenitor cell-based therapies for the treatment of hematological diseases is hindered by current protocols, which are cumbersome and have limited efficacy to augment the progenitor cell pool. We report that inhibition of T-cell protein tyrosine phosphatase (TC-PTP), an enzyme involved in the regulation of cytokine signaling, through gene knockout results in a ninefold increase in the number of hematopoietic progenitors in murine bone marrow (BM). This effect could be reproduced using a short (48 hours) treatment with a pharmacological inhibitor of TC-PTP in murine BM, as well as in human BM, peripheral blood, and cord blood. We also demonstrate that the ex vivo use of TC-PTP inhibitor only provides a temporary effect on stem cells and did not alter their capacity to reconstitute all hematopoietic components in vivo. We establish that one of the mechanisms whereby inhibition of TC-PTP mediates its effects involves the interleukin-18 (IL-18) signaling pathway, leading to increased production of IL-12 and interferon-gamma by progenitor cells. Together, our results reveal a previously unrecognized role for IL-18 in contributing to the augmentation of the stem cell pool and provide a novel and simple method to rapidly expand progenitor cells from a variety of sources using a pharmacological compound.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Interleucina-18/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Tiazolidinas/farmacologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Contagem de Células , Sangue Fetal/citologia , Sangue Fetal/efeitos dos fármacos , Sangue Fetal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Mobilização de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-12/biossíntese , Interleucina-12/imunologia , Interleucina-18/imunologia , Interleucina-18/farmacologia , Camundongos , Camundongos Transgênicos , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos
7.
BMC Cancer ; 14: 614, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25159192

RESUMO

BACKGROUND: Most cancer patients are treated with radiotherapy, but the treatment can also damage the surrounding normal tissue. Acute skin damage from cancer radiotherapy diminishes patients' quality of life, yet effective biological interventions for this damage are lacking. Protecting microvascular endothelial cells from irradiation-induced perturbations is emerging as a targeted damage-reduction strategy. Since Angiopoetin-1 signaling through the Tie2 receptor on endothelial cells opposes microvascular perturbations in other disease contexts, we used a preclinical Angiopoietin-1 mimic called Vasculotide to investigate its effect on skin radiation toxicity using a preclinical model. METHODS: Athymic mice were treated intraperitoneally with saline or Vasculotide and their flank skin was irradiated with a single large dose of ionizing radiation. Acute cutaneous damage and wound healing were evaluated by clinical skin grading, histology and immunostaining. Diffuse reflectance optical spectroscopy, myeloperoxidase-dependent bioluminescence imaging of neutrophils and a serum cytokine array were used to assess inflammation. Microvascular endothelial cell response to radiation was tested with in vitro clonogenic and Matrigel tubule formation assays. Tumour xenograft growth delay experiments were also performed. Appreciable differences between treatment groups were assessed mainly using parametric and non-parametric statistical tests comparing areas under curves, followed by post-hoc comparisons. RESULTS: In vivo, different schedules of Vasculotide treatment reduced the size of the irradiation-induced wound. Although skin damage scores remained similar on individual days, Vasculotide administered post irradiation resulted in less skin damage overall. Vasculotide alleviated irradiation-induced inflammation in the form of reduced levels of oxygenated hemoglobin, myeloperoxidase bioluminescence and chemokine MIP-2. Surprisingly, Vasculotide-treated animals also had higher microvascular endothelial cell density in wound granulation tissue. In vitro, Vasculotide enhanced the survival and function of irradiated endothelial cells. CONCLUSIONS: Vasculotide administration reduces acute skin radiation damage in mice, and may do so by affecting several biological processes. This radiation protection approach may have clinical impact for cancer radiotherapy patients by reducing the severity of their acute skin radiation damage.


Assuntos
Angiopoietina-1/química , Materiais Biomiméticos/administração & dosagem , Peptídeos/administração & dosagem , Lesões Experimentais por Radiação/tratamento farmacológico , Pele/efeitos dos fármacos , Pele/patologia , Cicatrização/efeitos dos fármacos , Animais , Materiais Biomiméticos/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Citocinas/sangue , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/efeitos da radiação , Humanos , Camundongos , Camundongos Nus , Neovascularização Fisiológica/efeitos dos fármacos , Peptídeos/uso terapêutico , Lesões Experimentais por Radiação/patologia , Radiação Ionizante
8.
J Surg Res ; 187(1): 43-52, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24176205

RESUMO

BACKGROUND: South Asian ethnicity is an independent risk factor for mortality after coronary artery bypass. We tested the hypothesis that this risk results from a greater inflammatory response to cardiopulmonary bypass (CPB). METHODS: This was a single-site prospective cohort study. We compared the inflammatory response to CPB in 20 Caucasians and 17 South Asians undergoing isolated coronary artery bypass grafting surgery. RESULTS: Plasma levels of proinflammatory cytokines (interleukin [IL]-6, IL-8, IL-12, interferon gamma, and tumor necrosis factor) and anti-inflammatory mediators (IL-10 and soluble TNF receptor I) were measured. The Toll-like receptor (TLR) signaling pathway was examined in peripheral blood monocytes by flow cytometry, measuring surface expression of TLR2, TLR4, and coreceptor CD14 and activation of downstream messenger molecules (interleukin-1 receptor-associated kinase 4, nuclear factor kappa from B cells (NF-κB), c-Jun amino-terminal kinase, p38 mitogen-activated protein kinase, and Protein Kinase B). South Asians had persistently higher plasma levels of IL-6 and exhibited increased TLR signaling through the p38 mitogen-activated protein kinase and Protein Kinase B pathways in inflammatory monocytes after CPB. This increased inflammatory response was paralleled clinically by a higher sequential organ failure assessment score (5.1 ± 1.4 versus 1.5 ± 1.6, P = 0.027) and prolonged cardiovascular system failure (23.5% versus 0%) 48 h after CPB. CONCLUSIONS: South Asians develop an exacerbated systemic inflammatory response after CPB, which may contribute to the higher morbidity and mortality associated with coronary artery bypass in this population. These patients may benefit from targeted anti-inflammatory therapies designed to mitigate the adverse consequences resulting from this response.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Idoso , Sudeste Asiático , Povo Asiático/estatística & dados numéricos , Biomarcadores/metabolismo , Ponte Cardiopulmonar/mortalidade , Ponte Cardiopulmonar/estatística & dados numéricos , Sistema Cardiovascular/imunologia , Citocinas/sangue , Citocinas/imunologia , Feminino , Humanos , Inflamação/etnologia , Inflamação/mortalidade , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Estudos Prospectivos , Transdução de Sinais/imunologia , Síndrome de Resposta Inflamatória Sistêmica/etnologia , Síndrome de Resposta Inflamatória Sistêmica/mortalidade , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , População Branca/estatística & dados numéricos
9.
Dev Biol ; 367(1): 40-54, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22546694

RESUMO

There is a reciprocal interaction between pancreatic islet cells and vascular endothelial cells (EC) in which EC-derived signals promote islet cell differentiation and islet development while islet cell-derived angiogenic factors promote EC recruitment and extensive islet vascularization. To examine the role of angiogenic factors in the coordinated development of islets and their associated vessels, we used a "tet-on" inducible system (mice expressing rat insulin promoter-reverse tetracycline activator transgene and a tet-operon-angiogenic factor transgene) to increase the ß cell production of vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (Ang1), or angiopoietin-2 (Ang2) during islet cell differentiation and islet development. In VEGF-A overexpressing embryos, ECs began to accumulate around epithelial tubes residing in the central region of the developing pancreas (associated with endocrine cells) as early as embryonic day 12.5 (E12.5) and increased dramatically by E16.5. While α and ß cells formed islet cell clusters in control embryos at E16.5, the increased EC population perturbed endocrine cell differentiation and islet cell clustering in VEGF-A overexpressing embryos. With continued overexpression of VEGF-A, α and ß cells became scattered, remained adjacent to ductal structures, and never coalesced into islets, resulting in a reduction in ß cell proliferation and ß cell mass at postnatal day 1. A similar impact on islet morphology was observed when VEGF-A was overexpressed in ß cells during the postnatal period. In contrast, increased expression of Ang1 or Ang2 in ß cells in developing or adult islets did not alter islet differentiation, development, or morphology, but altered islet EC ultrastructure. These data indicate that (1) increased EC number does not promote, but actually impairs ß cell proliferation and islet formation; (2) the level of VEGF-A production by islet endocrine cells is critical for islet vascularization during development and postnatally; (3) angiopoietin-Tie2 signaling in endothelial cells does not have a crucial role in the development or maintenance of islet vascularization.


Assuntos
Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiopoietina-1/metabolismo , Angiopoietina-2/metabolismo , Animais , Contagem de Células , Células Endoteliais/metabolismo , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/metabolismo , Camundongos
10.
Blood ; 118(18): 5050-9, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21868579

RESUMO

In human inflammatory diseases, we identified endothelial angiopoietin-2 (Ang-2) expression to be strongly associated with inflammations mediated by myeloid cells but not lymphocytes. To identify the underlying mechanism, we made use of a transgenic mouse model with inducible endothelial cell-specific expression of Ang-2. In this model, in the absence of inflammatory stimuli, long-term expression of Ang-2 led to a time-dependent accumulation of myeloid cells in numerous organs, suggesting that Ang-2 is sufficient to recruit myeloid cells. In models of acute inflammation, such as delayed-type hypersensitivity and peritonitis, Ang-2 transgenic animals showed an increased responsiveness. Intravital fluorescence video microscopy revealed augmented cell adhesion as an underlying event. Consequently, we demonstrated that Ang-2 is able to induce strong monocyte adhesion under shear in vitro, which could be blocked by antibodies to ß2-integrin. Taken together, our results describe Ang-2 as a novel, endothelial-derived regulator of myeloid cell infiltration that modulates ß2-integrin-mediated adhesion in a paracrine manner.


Assuntos
Angiopoietina-2/fisiologia , Antígenos CD18/fisiologia , Movimento Celular/genética , Células Mieloides/fisiologia , Adulto , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Animais , Antígenos CD18/genética , Antígenos CD18/metabolismo , Adesão Celular/genética , Células Cultivadas , Predisposição Genética para Doença , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Monócitos/metabolismo , Monócitos/fisiologia , Células Mieloides/metabolismo , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
11.
Cancer Cell ; 7(1): 101-11, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15652753

RESUMO

Development of antiangiogenic therapies would be significantly facilitated by quantitative surrogate pharmacodynamic markers. Circulating peripheral blood endothelial cells (CECs) and/or their putative progenitor subset (CEPs) have been proposed but not yet fully validated for this purpose. Herein, we provide such validation by showing a striking correlation between highly genetically heterogeneous bFGF- or VEGF-induced angiogenesis and intrinsic CEC or CEP levels measured by flow cytometry, among eight different inbred mouse strains. Moreover, studies using genetically altered mice showed that levels of these cells are affected by regulators of angiogenesis, including VEGF, Tie-2, and thrombospondin-1. Finally, treatment with a targeted VEGFR-2 antibody caused a dose-dependent reduction in viable CEPs that precisely paralleled its previously and empirically determined antitumor activity.


Assuntos
Inibidores da Angiogênese/farmacologia , Biomarcadores , Células Endoteliais/fisiologia , Neovascularização Patológica , Células-Tronco/fisiologia , Inibidores da Angiogênese/metabolismo , Animais , Bioensaio/métodos , Sobrevivência Celular , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Fenótipo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Células-Tronco/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Blood ; 116(3): 428-36, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20445019

RESUMO

The activation of Fli-1, an Ets transcription factor, is the critical genetic event in Friend murine leukemia virus (F-MuLV)-induced erythroleukemia. Fli-1 overexpression leads to erythropoietin-dependent erythroblast proliferation, enhanced survival, and inhibition of terminal differentiation, through activation of the Ras pathway. However, the mechanism by which Fli-1 activates this signal transduction pathway has yet to be identified. Down-regulation of the Src homology 2 (SH2) domain-containing inositol-5-phosphatase-1 (SHIP-1) is associated with erythropoietin-stimulated erythroleukemic cells and correlates with increased proliferation of transformed cells. In this study, we have shown that F-MuLV-infected SHIP-1 knockout mice display accelerated erythroleukemia progression. In addition, RNA interference (RNAi)-mediated suppression of SHIP-1 in erythroleukemia cells activates the phosphatidylinositol 3-kinase (PI 3-K) and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathways, blocks erythroid differentiation, accelerates erythropoietin-induced proliferation, and leads to PI 3-K-dependent Fli-1 up-regulation. Chromatin immunoprecipitation and luciferase assays confirmed that Fli-1 binds directly to an Ets DNA binding site within the SHIP-1 promoter and suppresses SHIP-1 transcription. These data provide evidence to suggest that SHIP-1 is a direct Fli-1 target, SHIP-1 and Fli-1 regulate each other in a negative feedback loop, and the suppression of SHIP-1 by Fli-1 plays an important role in the transformation of erythroid progenitors by F-MuLV.


Assuntos
Leucemia Eritroblástica Aguda/etiologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , DNA/genética , DNA/metabolismo , Primers do DNA/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Retroalimentação Fisiológica , Vírus da Leucemia Murina de Friend/patogenicidade , Humanos , Inositol Polifosfato 5-Fosfatases , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Modelos Biológicos , Dados de Sequência Molecular , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-fli-1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética
13.
Acta Neuropathol ; 124(6): 763-75, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23143192

RESUMO

The cellular and molecular mechanisms of tumor angiogenesis and its prospects for anti-angiogenic cancer therapy are major issues in almost all current concepts of both cancer biology and targeted cancer therapy. Currently, (1) sprouting angiogenesis, (2) vascular co-option, (3) vascular intussusception, (4) vasculogenic mimicry, (5) bone marrow-derived vasculogenesis, (6) cancer stem-like cell-derived vasculogenesis and (7) myeloid cell-driven angiogenesis are all considered to contribute to tumor angiogenesis. Many of these processes have been described in developmental angiogenesis; however, the relative contribution and relevance of these in human brain cancer remain unclear. Preclinical tumor models support a role for sprouting angiogenesis, vascular co-option and myeloid cell-derived angiogenesis in glioma vascularization, whereas a role for the other four mechanisms remains controversial and rather enigmatic. The anti-angiogenesis drug Avastin (Bevacizumab), which targets VEGF, has become one of the most popular cancer drugs in the world. Anti-angiogenic therapy may lead to vascular normalization and as such facilitate conventional cytotoxic chemotherapy. However, preclinical and clinical studies suggest that anti-VEGF therapy using bevacizumab may also lead to a pro-migratory phenotype in therapy resistant glioblastomas and thus actively promote tumor invasion and recurrent tumor growth. This review focusses on (1) mechanisms of tumor angiogenesis in human malignant glioma that are of particular relevance for targeted therapy and (2) controversial issues in tumor angiogenesis such as cancer stem-like cell-derived vasculogenesis and bone-marrow-derived vasculogenesis.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Glioma/irrigação sanguínea , Glioma/patologia , Humanos , Transdução de Sinais/fisiologia
14.
J Immunol ; 184(2): 1092-101, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19995900

RESUMO

We have previously shown that, during inflammatory autoimmune diseases in humans, the immune system develops a neutralizing auto-Ab-based response to a very limited number of inflammatory mediators, and that amplification of each response could be beneficial for the host. Our working hypothesis has been that this selective breakdown of immunological tolerance is due to a predominant expression of an inflammatory mediator at an immune-restricted site undergoing a destructive process. All three conditions also take place in cancer diseases. In this study, we delineate this hypothesis for the first time in a human cancer disease and then explore its clinical implications. We show that in primary tumor sections of prostate cancer subjects, CCL2 is predominantly expressed at the tumor site over other chemokines that have been associated with tumor development, including: CXCL12, CXCL10, CXCL8, CCL3, and CCL5. Subsequently, the immune response selectivity mounts an Ab-based response to CCL2. These Abs are neutralizing Abs. These findings hold diagnostic and therapeutic implications. The current diagnosis of prostate cancer is based on prostate-specific Ag measurements that do not distinguish benign hypertrophy from malignancy. We show in this study that development of anti-CCL2 Abs is selective to the malignant stage. From a clinically oriented perspective, we show, in an experimental model of the disease, that DNA-based amplification of this response suppresses disease, which has implications for a novel way of therapy in humans.


Assuntos
Quimiocina CCL2/análise , Quimiocina CCL2/imunologia , Tolerância Imunológica , Neoplasias da Próstata/imunologia , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Autoanticorpos/biossíntese , Autoanticorpos/imunologia , Quimiocina CCL2/genética , Quimiocinas/análise , DNA de Neoplasias/administração & dosagem , DNA de Neoplasias/imunologia , DNA de Neoplasias/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vacinas de DNA/administração & dosagem , Vacinas de DNA/farmacologia
15.
Crit Care ; 15(5): R261, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22040774

RESUMO

INTRODUCTION: Angiopoietin-1 (Angpt1), the natural agonist ligand for the endothelial Tie2 receptor, is a non-redundant endothelial survival and vascular stabilization factor that reduces endothelial permeability and inhibits leukocyte-endothelium interactions. Here we evaluate the efficacy of a novel polyethylene glycol (PEG)-clustered Tie2 agonist peptide, Vasculotide (VT), to protect against vascular leakage and mortality in a murine model of polymicrobial abdominal sepsis. METHODS: Polymicrobial abdominal sepsis in C57BL6 mice was induced by cecal-ligation-and-puncture (CLP). Mice were treated with different dosages of VT or equal volume of phosphate-buffered saline (PBS). Sham-operated animals served as time-matched controls. RESULTS: Systemic administration of VT induced long-lasting Tie2 activation in vivo. VT protected against sepsis-induced endothelial barrier dysfunction, as evidenced by attenuation of vascular leakage and leukocyte transmigration into the peritoneal cavity. Histological analysis revealed that VT treatment ameliorated leukocyte infiltration in kidneys of septic mice, probably due to reduced endothelial adhesion molecule expression. VT-driven effects were associated with significantly improved organ function and reduced circulating cytokine levels. The endothelial-specific action of VT was supported by additional in vitro studies showing no effect of VT on either cytokine release from isolated peritoneal macrophages, or migratory capacity of isolated neutrophils. Finally, administration of VT pre-CLP (Hazard Ratio 0.39 [95% Confidence interval 0.19-0.81] P < 0.001) and post-CLP reduced mortality in septic mice (HR 0.22 [95% CI 0.06-0.83] P < 0.05). CONCLUSIONS: We provide proof of principle in support of the efficacious use of PEGylated VT, a drug-like Tie2 receptor agonist, to counteract microvascular endothelial barrier dysfunction and reduce mortality in a clinically relevant murine sepsis model. Further studies are needed to pave the road for clinical application of this therapeutic concept.


Assuntos
Permeabilidade Capilar/fisiologia , Endotélio Vascular/metabolismo , Receptores Proteína Tirosina Quinases/agonistas , Receptores Proteína Tirosina Quinases/fisiologia , Sepse/mortalidade , Sepse/prevenção & controle , Abdome/patologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/uso terapêutico , Cavidade Peritoneal/patologia , Polietilenoglicóis/uso terapêutico , Receptores Proteína Tirosina Quinases/síntese química , Receptor TIE-2 , Sepse/metabolismo
16.
Proteomics ; 10(8): 1658-72, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20186751

RESUMO

Differential protein profiling by 2-D PAGE is generally useful in biomarker discovery, proteome analysis and routine sample preparation prior to analysis by MS. The goal of this study was to compare 2-D PAGE-resolved protein profile of lymphatic endothelial cells to those of venous, and arterial endothelial cells isolated from lymphatic and blood vessels of bovine mesentery (bm). Three 2-D PAGE electrophoretograms were produced for each of the three cell types and quantitatively analyzed. Protein identification by LC-MS/MS was performed to identify 39 proteins found to be present at statistically significantly different levels in the three cell types (p<0.05). Most of the 39 proteins have not been previously reported in EC proteomic studies of 2-D PAGE electrophoretograms. Three proteins, HSPA1B (HSP70 family member), HSPB1 (HSP27 family member), and UBE2D3 (a member of E2 ubiquitin-conjugating enzymes) found to be at highest levels in bm arterial endothelial cells, bm venous endothelial cells, and bm lymphatic endothelial cells, respectively, were validated by immunoblotting with appropriate antibodies. The lack of substantial overlap between our results and those of other groups' comparative studies are discussed. Functional implications of differences in levels of various proteins identified in the three cell types are also discussed.


Assuntos
Artérias/química , Células Endoteliais/química , Vasos Linfáticos/química , Mesentério/química , Proteoma/análise , Veias/química , Animais , Bovinos , Células Cultivadas , Proteômica
17.
BMC Dev Biol ; 10: 72, 2010 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-20584329

RESUMO

BACKGROUND: In vivo studies demonstrate that the Prox1 transcription factor plays a critical role in the development of the early lymphatic system. Upon Prox1 expression, early lymphatic endothelial cells differentiate from the cardinal vein and begin to express lymphatic markers such as VEGFR-3, LYVE-1 and Podoplanin. Subsequent in vitro studies have found that differentiated vascular endothelial cells can be reprogrammed by Prox1 to express a lymphatic gene profile, suggesting that Prox1 can initiate the expression of a unique gene signature during lymphangiogenesis. While the in vitro data suggest that gene reprogramming occurs upon Prox1 expression, it is not clear if this is a direct result of Prox1 in vascular endothelial cells in vivo. RESULTS: Overexpression of Prox1 in vascular endothelial cells during embryonic development results in the reprogramming of genes to that of a more lymphatic signature. Consequent to this overexpression, embryos suffer from gross edema that results in embryonic lethality at E13.5. Furthermore, hemorrhaging and anemia is apparent along with clear defects in lymph sac development. Alterations in junctional proteins resulting in an increase in vascular permeability upon Prox1 overexpression may contribute to the complications found during embryonic development. CONCLUSION: We present a novel mouse model that addresses the importance of Prox1 in early embryonic lymphangiogenesis. It is clear that there needs to be a measured pattern of expression of Prox1 during embryonic development. Furthermore, Prox1 reprograms vascular endothelial cells in vivo by creating a molecular signature to that of a lymphatic endothelial cell.


Assuntos
Embrião de Mamíferos/metabolismo , Células Endoteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Linfangiogênese , Proteínas Supressoras de Tumor/metabolismo , Animais , Diferenciação Celular , Embrião de Mamíferos/citologia , Perfilação da Expressão Gênica , Camundongos , Receptor de TIE-1/genética
18.
Cell Commun Signal ; 8: 30, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-20973951

RESUMO

BACKGROUND: Growth factor receptor bound (Grb) proteins 7, 10 and 14 are a family of structurally related multi-domain adaptor proteins involved in a variety of biological processes. Grb7, 10 and 14 are known to become serine and/or threonine phosphorylated in response to growth factor (GF) stimulation. Grb7 and 10 have also been shown to become tyrosine phosphorylated under certain conditions. Under experimental conditions Grb7 is tyrosine phosphorylated by the Tie2/Tie-2/Tek angiogenic receptor tyrosine kinase (RTK). Furthermore, Grb14 has also been shown to interact with Tie2, however tyrosine phosphorylation of this Grb family member has yet to be reported. RESULTS: Here we report for the first time tyrosine phosphorylation of Grb14. This phosphorylation requires a kinase competent Tie2 as well as intact tyrosines 1100 and 1106 (Y1100 and Y1106) on the receptor. Furthermore, a complete SH2 domain on Grb14 is required for Grb14 tyrosine phosphorylation by Tie2. Grb14 was also able to become tyrosine phosphorylated in primary endothelial cells when treated with a soluble and potent variant of the Tie2 ligand, cartilage oligomeric matrix protein (COMP) Ang1. CONCLUSION: Our results show that Grb14, like its family members Grb7 and Grb10, is able to be tyrosine phosphorylated. Furthermore, our data indicate a role for Grb14 in endothelial signaling downstream of the Tie2 receptor.

19.
BMC Neurol ; 10: 114, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21078165

RESUMO

BACKGROUND: The Blood Brain Barrier (BBB) maintains the homeostasis of central nervous system by preventing the free passage of macromolecules from the systemic circulation into the brain. This normal physiological function of the BBB presents a challenge for delivery of therapeutic compounds into the brain. Recent studies have shown that the application of focused ultrasound together with ultrasound contrast agent (microbubbles) temporarily increases the permeability of the BBB. This effect is associated with breakdown of tight junctions, the structures that regulate the paracellular permeability of the endothelial cell layer. The influence of this ultrasound effect on the activation of intracellular signaling proteins is currently not well understood. Therefore, the aim of this study was to investigate the activation of cell survival signaling molecules in response to ultrasound-mediated BBB opening; METHODS: The BBB was disrupted in two four-spot lines (1-1.5 mm spacing) along the right hemisphere of rat brain with ultrasound beams (0.3 MPa, 120 s, 10 ms bursts, repetition frequency = 1 Hz) in the presence Definity microbubbles. Contrast-enhanced MRI images were acquired to assess the extent of BBB opening upon which the animals were sacrificed and the brains removed and processed for biochemical and immunohistochemical analyses; RESULTS: Immunoblotting of sonicated brain lysates resolved by SDS-PAGE demonstrated an increase in phosphorylation of Akt and its downstream signaling molecule, GSK3ß, while the phosphorylation of MAPK remained unchanged. The elevated levels of pAkt and pGSK3ß are still evident after 24 hours post-sonication, a time point where the integrity of the BBB is known to be re-established. Furthermore, immunofluoresence staining localized this increase in pAkt and pGSK3ß levels to neuronal cells flanking the region of the disrupted BBB; CONCLUSIONS: Our data demonstrates that ultrasound-mediated BBB disruption causes an activation of the Akt signaling pathway in neuronal cells surrounding the disrupted BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Microbolhas , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Análise de Variância , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Western Blotting , Meios de Contraste/metabolismo , Imunofluorescência , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Imunoprecipitação , Imageamento por Ressonância Magnética , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sonicação , Fatores de Tempo , Ultrassonografia
20.
Biochem J ; 423(3): 375-80, 2009 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-19689429

RESUMO

Tie2 [where 'Tie' is an acronym from tyrosine kinase with Ig and EGF (epidermal growth factor) homology domains] is a receptor tyrosine kinase expressed predominantly on the surface of endothelial cells. Activated by its ligands, the angiopoietins, Tie2 initiates signalling pathways that modulate vascular stability and angiogenesis. Deletion of either the Tie2 or Ang1 (angiopoietin-1) gene in mice results in lethal vascular defects, signifying their importance in vascular development. The mechanism employed by the Tie2 signalling machinery to attenuate or cause receptor trafficking is not well defined. Stimulation of Tie2-expressing cells with Ang1 results in its ubiquitylation, suggesting that this may provide the necessary signal for receptor turnover. Using a candidate molecule approach, we demonstrate that Tie2 co-immunoprecipitates with c-Cbl in an Ang1-dependent manner and its ubiquitylation can be inhibited by the dominant-interfering molecule v-Cbl (a viral form of c-Cbl that contains only the tyrosine kinase-binding domain region). Inhibition of the Tie2-Cbl interaction by overexpression of v-Cbl blocks ligand-induced Tie2 internalization and degradation. In summary, our results illustrate that c-Cbl interacts with the Tie2 signalling complex in a stimulation-dependent manner, and that this interaction is required for Tie2 ubiquitylation, internalization and degradation.


Assuntos
Angiopoietina-1/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Receptor TIE-2/metabolismo , Transdução de Sinais/fisiologia , Ubiquitinação/fisiologia , Angiopoietina-1/genética , Angiopoietina-1/farmacologia , Linhagem Celular , Humanos , Proteína Oncogênica v-cbl/genética , Proteína Oncogênica v-cbl/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-cbl/genética , Receptor TIE-2/genética , Transdução de Sinais/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa