Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 14(5): e11380, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756684

RESUMO

Observing animals in the wild often poses extreme challenges, but animal-borne accelerometers are increasingly revealing unobservable behaviours. Automated machine learning streamlines behaviour identification from the substantial datasets generated during multi-animal, long-term studies; however, the accuracy of such models depends on the qualities of the training data. We examined how data processing influenced the predictive accuracy of random forest (RF) models, leveraging the easily observed domestic cat (Felis catus) as a model organism for terrestrial mammalian behaviours. Nine indoor domestic cats were equipped with collar-mounted tri-axial accelerometers, and behaviours were recorded alongside video footage. From this calibrated data, eight datasets were derived with (i) additional descriptive variables, (ii) altered frequencies of acceleration data (40 Hz vs. a mean over 1 s) and (iii) standardised durations of different behaviours. These training datasets were used to generate RF models that were validated against calibrated cat behaviours before identifying the behaviours of five free-ranging tag-equipped cats. These predictions were compared to those identified manually to validate the accuracy of the RF models for free-ranging animal behaviours. RF models accurately predicted the behaviours of indoor domestic cats (F-measure up to 0.96) with discernible improvements observed with post-data-collection processing. Additional variables, standardised durations of behaviours and higher recording frequencies improved model accuracy. However, prediction accuracy varied with different behaviours, where high-frequency models excelled in identifying fast-paced behaviours (e.g. locomotion), whereas lower-frequency models (1 Hz) more accurately identified slower, aperiodic behaviours such as grooming and feeding, particularly when examining free-ranging cat behaviours. While RF modelling offered a robust means of behaviour identification from accelerometer data, field validations were important to validate model accuracy for free-ranging individuals. Future studies may benefit from employing similar data processing methods that enhance RF behaviour identification accuracy, with extensive advantages for investigations into ecology, welfare and management of wild animals.

2.
Curr Biol ; 32(24): R1334-R1335, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36538880

RESUMO

Carolyn Dunford introduces the poisoning of big predatory felids, which causes significant conservation concerns.


Assuntos
Felidae , Panthera , Animais , Comportamento Predatório
3.
Mov Ecol ; 8: 34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32782806

RESUMO

BACKGROUND: Under current scenarios of climate change and habitat loss, many wild animals, especially large predators, are moving into novel energetically challenging environments. Consequently, changes in terrain associated with such moves may heighten energetic costs and effect the decline of populations in new localities. METHODS: To examine locomotor costs of a large carnivorous mammal moving in mountainous habitats, the oxygen consumption of captive pumas (Puma concolor) was measured during treadmill locomotion on level and incline (6.8°) surfaces. These data were used to predict energetic costs of locomotor behaviours of free-ranging pumas equipped with GPS/accelerometer collars in California's Santa Cruz Mountains. RESULTS: Incline walking resulted in a 42.0% ± 7.2 SEM increase in the costs of transport compared to level performance. Pumas negotiated steep terrain by traversing across hillsides (mean hill incline 17.2° ± 0.3 SEM; mean path incline 7.3° ± 0.1 SEM). Pumas also walked more slowly up steeper paths, thereby minimizing the energetic impact of vertical terrains. Estimated daily energy expenditure (DEE) based on GPS-derived speeds of free-ranging pumas was 18.3 MJ day- 1 ± 0.2 SEM. Calculations show that a 20 degree increase in mean steepness of the terrain would increase puma DEE by less than 1% as they only spend a small proportion (10%) of their day travelling. They also avoided elevated costs by utilizing slower speeds and shallower path angles. CONCLUSIONS: While many factors influence survival in novel habitats, we illustrate the importance of behaviours which reduce locomotor costs when traversing new, energetically challenging environments, and demonstrate that these behaviours are utilised by pumas in the wild.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa