Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Blood ; 142(3): 290-305, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37192286

RESUMO

Despite >80 years of clinical experience with coagulation factor VIII (FVIII) inhibitors, surprisingly little is known about the in vivo mechanism of this most serious complication of replacement therapy for hemophilia A. These neutralizing antidrug alloantibodies arise in ∼30% of patients. Inhibitor formation is T-cell dependent, but events leading up to helper T-cell activation have been elusive because of, in part, the complex anatomy and cellular makeup of the spleen. Here, we show that FVIII antigen presentation to CD4+ T cells critically depends on a select set of several anatomically distinct antigen-presenting cells, whereby marginal zone B cells and marginal zone and marginal metallophilic macrophages but not red pulp macrophages (RPMFs) participate in shuttling FVIII to the white pulp in which conventional dendritic cells (DCs) prime helper T cells, which then differentiate into follicular helper T (Tfh) cells. Toll-like receptor 9 stimulation accelerated Tfh cell responses and germinal center and inhibitor formation, whereas systemic administration of FVIII alone in hemophilia A mice increased frequencies of monocyte-derived and plasmacytoid DCs. Moreover, FVIII enhanced T-cell proliferation to another protein antigen (ovalbumin), and inflammatory signaling-deficient mice were less likely to develop inhibitors, indicating that FVIII may have intrinsic immunostimulatory properties. Ovalbumin, which, unlike FVIII, is absorbed into the RPMF compartment, fails to elicit T-cell proliferative and antibody responses when administered at the same dose as FVIII. Altogether, we propose that an antigen trafficking pattern that results in efficient in vivo delivery to DCs and inflammatory signaling, shape the immunogenicity of FVIII.


Assuntos
Linfócitos T CD4-Positivos , Fator VIII , Hemofilia A , Hemostáticos , Animais , Camundongos , Células Dendríticas/metabolismo , Fator VIII/imunologia , Fator VIII/uso terapêutico , Hemofilia A/tratamento farmacológico , Hemostáticos/imunologia , Hemostáticos/uso terapêutico , Ovalbumina/imunologia
2.
Lab Invest ; 103(6): 100104, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36867975

RESUMO

The human kidney is a complex organ with various cell types that are intricately organized to perform key physiological functions and maintain homeostasis. New imaging modalities, such as mesoscale and highly multiplexed fluorescence microscopy, are increasingly being applied to human kidney tissue to create single-cell resolution data sets that are both spatially large and multidimensional. These single-cell resolution high-content imaging data sets have great potential to uncover the complex spatial organization and cellular makeup of the human kidney. Tissue cytometry is a novel approach used for the quantitative analysis of imaging data; however, the scale and complexity of such data sets pose unique challenges for processing and analysis. We have developed the Volumetric Tissue Exploration and Analysis (VTEA) software, a unique tool that integrates image processing, segmentation, and interactive cytometry analysis into a single framework on desktop computers. Supported by an extensible and open-source framework, VTEA's integrated pipeline now includes enhanced analytical tools, such as machine learning, data visualization, and neighborhood analyses, for hyperdimensional large-scale imaging data sets. These novel capabilities enable the analysis of mesoscale 2- and 3-dimensional multiplexed human kidney imaging data sets (such as co-detection by indexing and 3-dimensional confocal multiplexed fluorescence imaging). We demonstrate the utility of this approach in identifying cell subtypes in the kidney on the basis of labels, spatial association, and their microenvironment or neighborhood membership. VTEA provides an integrated and intuitive approach to decipher the cellular and spatial complexity of the human kidney and complements other transcriptomics and epigenetic efforts to define the landscape of kidney cell types.


Assuntos
Imageamento Tridimensional , Rim , Humanos , Rim/diagnóstico por imagem , Imageamento Tridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Software , Aprendizado de Máquina
3.
Drug Metab Dispos ; 51(3): 403-412, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460476

RESUMO

Bifunctional antibody (BfAb) therapeutics offer the potential for novel functionalities beyond those of the individual monospecific entities. However, combining these entities into a single molecule can have unpredictable effects, including changes in pharmacokinetics that limit the compound's therapeutic profile. A better understanding of how molecular modifications affect in vivo tissue interactions could help inform BfAb design. The present studies were predicated on the observation that a BfAb designed to have minimal off-target interactions cleared from the circulation twice as fast as the monoclonal antibody (mAb) from which it was derived. The present study leverages the spatial and temporal resolution of intravital microscopy (IVM) to identify cellular interactions that may explain the different pharmacokinetics of the two compounds. Disposition studies of mice demonstrated that radiolabeled compounds distributed similarly over the first 24 hours, except that BfAb accumulated approximately two- to -three times more than mAb in the liver. IVM studies of mice demonstrated that both distributed to endosomes of liver endothelia but with different kinetics. Whereas mAb accumulated rapidly within the first hour of administration, BfAb accumulated only modestly during the first hour but continued to accumulate over 24 hours, ultimately reaching levels similar to those of the mAb. Although neither compound was freely filtered by the mouse or rat kidney, BfAb, but not mAb, was found to accumulate over 24 hours in endosomes of proximal tubule cells. These studies demonstrate how IVM can be used as a tool in drug design, revealing unpredicted cellular interactions that are undetectable by conventional analyses. SIGNIFICANCE STATEMENT: Bifunctional antibodies offer novel therapeutic functionalities beyond those of the individual monospecific entities. However, combining these entities into a single molecule can have unpredictable effects, including undesirable changes in pharmacokinetics. Studies of the dynamic distribution of a bifunctional antibody and its parent monoclonal antibody presented here demonstrate how intravital microscopy can expand our understanding of the in vivo disposition of therapeutics, detecting off-target interactions that could not be detected by conventional pharmacokinetics approaches or predicted by conventional physicochemical analyses.


Assuntos
Anticorpos Monoclonais , Fígado , Ratos , Camundongos , Animais , Distribuição Tecidual , Anticorpos Monoclonais/farmacocinética , Fígado/metabolismo , Rim
4.
Physiol Genomics ; 53(1): 1-11, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197228

RESUMO

Comprehensive and spatially mapped molecular atlases of organs at a cellular level are a critical resource to gain insights into pathogenic mechanisms and personalized therapies for diseases. The Kidney Precision Medicine Project (KPMP) is an endeavor to generate three-dimensional (3-D) molecular atlases of healthy and diseased kidney biopsies by using multiple state-of-the-art omics and imaging technologies across several institutions. Obtaining rigorous and reproducible results from disparate methods and at different sites to interrogate biomolecules at a single-cell level or in 3-D space is a significant challenge that can be a futile exercise if not well controlled. We describe a "follow the tissue" pipeline for generating a reliable and authentic single-cell/region 3-D molecular atlas of human adult kidney. Our approach emphasizes quality assurance, quality control, validation, and harmonization across different omics and imaging technologies from sample procurement, processing, storage, shipping to data generation, analysis, and sharing. We established benchmarks for quality control, rigor, reproducibility, and feasibility across multiple technologies through a pilot experiment using common source tissue that was processed and analyzed at different institutions and different technologies. A peer review system was established to critically review quality control measures and the reproducibility of data generated by each technology before their being approved to interrogate clinical biopsy specimens. The process established economizes the use of valuable biopsy tissue for multiomics and imaging analysis with stringent quality control to ensure rigor and reproducibility of results and serves as a model for precision medicine projects across laboratories, institutions and consortia.


Assuntos
Guias como Assunto , Rim/patologia , Medicina de Precisão , Biópsia , Humanos , Reprodutibilidade dos Testes
5.
Am J Physiol Renal Physiol ; 320(5): F671-F682, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33682441

RESUMO

The Indiana O'Brien Center for Advanced Microscopic Analysis is a National Institutes of Health (NIH) P30-funded research center dedicated to the development and dissemination of advanced methods of optical microscopy to support renal researchers throughout the world. The Indiana O'Brien Center was founded in 2002 as an NIH P-50 project with the original goal of helping researchers realize the potential of intravital multiphoton microscopy as a tool for understanding renal physiology and pathophysiology. The center has since expanded into the development and implementation of large-scale, high-content tissue cytometry. The advanced imaging capabilities of the center are made available to renal researchers worldwide via collaborations and a unique fellowship program. Center outreach is accomplished through an enrichment core that oversees a seminar series, an informational website, and a biennial workshop featuring hands-on training from members of the Indiana O'Brien Center and imaging experts from around the world.


Assuntos
Academias e Institutos , Pesquisa Biomédica , Microscopia Intravital , Nefropatias/patologia , Rim/patologia , Microscopia de Fluorescência por Excitação Multifotônica , Nefrologia , Animais , Difusão de Inovações , Humanos , Interpretação de Imagem Assistida por Computador , Indiana , Cooperação Internacional , Rim/fisiopatologia , Nefropatias/fisiopatologia , Comunicação Acadêmica
6.
Lab Invest ; 101(5): 661-676, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33408350

RESUMO

The advent of personalized medicine has driven the development of novel approaches for obtaining detailed cellular and molecular information from clinical tissue samples. Tissue cytometry is a promising new technique that can be used to enumerate and characterize each cell in a tissue and, unlike flow cytometry and other single-cell techniques, does so in the context of the intact tissue, preserving spatial information that is frequently crucial to understanding a cell's physiology, function, and behavior. However, the wide-scale adoption of tissue cytometry as a research tool has been limited by the fact that published examples utilize specialized techniques that are beyond the capabilities of most laboratories. Here we describe a complete and accessible pipeline, including methods of sample preparation, microscopy, image analysis, and data analysis for large-scale three-dimensional tissue cytometry of human kidney tissues. In this workflow, multiphoton microscopy of unlabeled tissue is first conducted to collect autofluorescence and second-harmonic images. The tissue is then labeled with eight fluorescent probes, and imaged using spectral confocal microscopy. The raw 16-channel images are spectrally deconvolved into 8-channel images, and analyzed using the Volumetric Tissue Exploration and Analysis (VTEA) software developed by our group. We applied this workflow to analyze millimeter-scale tissue samples obtained from human nephrectomies and from renal biopsies from individuals diagnosed with diabetic nephropathy, generating a quantitative census of tens of thousands of cells in each. Such analyses can provide useful insights that can be linked to the biology or pathology of kidney disease. The approach utilizes common laboratory techniques, is compatible with most commercially-available confocal microscope systems and all image and data analysis is conducted using the VTEA image analysis software, which is available as a plug-in for ImageJ.


Assuntos
Técnicas Citológicas , Imageamento Tridimensional , Rim/citologia , Microscopia de Fluorescência por Excitação Multifotônica , Software , Corantes Fluorescentes , Humanos , Microscopia Confocal
7.
Cytometry A ; 99(7): 707-721, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33252180

RESUMO

To understand the physiology and pathology of disease, capturing the heterogeneity of cell types within their tissue environment is fundamental. In such an endeavor, the human kidney presents a formidable challenge because its complex organizational structure is tightly linked to key physiological functions. Advances in imaging-based cell classification may be limited by the need to incorporate specific markers that can link classification to function. Multiplex imaging can mitigate these limitations, but requires cumulative incorporation of markers, which may lead to tissue exhaustion. Furthermore, the application of such strategies in large scale 3-dimensional (3D) imaging is challenging. Here, we propose that 3D nuclear signatures from a DNA stain, DAPI, which could be incorporated in most experimental imaging, can be used for classifying cells in intact human kidney tissue. We developed an unsupervised approach that uses 3D tissue cytometry to generate a large training dataset of nuclei images (NephNuc), where each nucleus is associated with a cell type label. We then devised various supervised machine learning approaches for kidney cell classification and demonstrated that a deep learning approach outperforms classical machine learning or shape-based classifiers. Specifically, a custom 3D convolutional neural network (NephNet3D) trained on nuclei image volumes achieved a balanced accuracy of 80.26%. Importantly, integrating NephNet3D classification with tissue cytometry allowed in situ visualization of cell type classifications in kidney tissue. In conclusion, we present a tissue cytometry and deep learning approach for in situ classification of cell types in human kidney tissue using only a DNA stain. This methodology is generalizable to other tissues and has potential advantages on tissue economy and non-exhaustive classification of different cell types.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Humanos , Rim , Coloração e Rotulagem , Aprendizado de Máquina Supervisionado
8.
Nephrol Dial Transplant ; 37(1): 72-84, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33537765

RESUMO

BACKGROUND: Idiopathic nodular mesangial sclerosis, also called idiopathic nodular glomerulosclerosis (ING), is a rare clinical entity with an unclear pathogenesis. The hallmark of this disease is the presence of nodular mesangial sclerosis on histology without clinical evidence of diabetes mellitus or other predisposing diagnoses. To achieve insights into its pathogenesis, we queried the clinical, histopathologic and transcriptomic features of ING and nodular diabetic nephropathy (DN). METHODS: All renal biopsy reports accessioned at Indiana University Health from 2001 to 2016 were reviewed to identify 48 ING cases. Clinical and histopathologic features were compared between individuals with ING and DN (n = 751). Glomeruli of ING (n = 5), DN (n = 18) and reference (REF) nephrectomy (n = 9) samples were isolated by laser microdissection and RNA was sequenced. Immunohistochemistry of proline-rich 36 (PRR36) protein was performed. RESULTS: ING subjects were frequently hypertensive (95.8%) with a smoking history (66.7%). ING subjects were older, had lower proteinuria and had less hyaline arteriolosclerosis than DN subjects. Butanoate metabolism was an enriched pathway in ING samples compared with either REF or DN samples. The top differentially expressed gene, PRR36, had increased expression in glomeruli 248-fold [false discovery rate (FDR) P = 5.93 × 10-6] compared with the REF and increased 109-fold (FDR P = 1.85 × 10-6) compared with DN samples. Immunohistochemistry revealed a reduced proportion of cells with perinuclear reaction in ING samples as compared to DN. CONCLUSIONS: Despite similar clinical and histopathologic characteristics in ING and DN, the uncovered transcriptomic signature suggests that ING has distinct molecular features from nodular DN. Further study is warranted to understand these relationships.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Síndrome Nefrótica , Diabetes Mellitus/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Humanos , Glomérulos Renais/patologia , Síndrome Nefrótica/patologia , Proteinúria/patologia , Esclerose/patologia
9.
Biophys J ; 118(8): 1820-1829, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32191861

RESUMO

We report the use of pulsed interleaved excitation (PIE)-fluorescence lifetime imaging microscopy (FLIM) to measure the activities of two different biosensor probes simultaneously in single living cells. Many genetically encoded biosensors rely on the measurement of Förster resonance energy transfer (FRET) to detect changes in biosensor conformation that accompany the targeted cell signaling event. One of the most robust ways of quantifying FRET is to measure changes in the fluorescence lifetime of the donor fluorophore using FLIM. The study of complex signaling networks in living cells demands the ability to track more than one of these cellular events at the same time. Here, we demonstrate how PIE-FLIM can separate and quantify the signals from different FRET-based biosensors to simultaneously measure changes in the activity of two cell signaling pathways in the same living cells in tissues. The imaging system described here uses selectable laser wavelengths and synchronized detection gating that can be tailored and optimized for each FRET pair. Proof-of-principle studies showing simultaneous measurement of cytosolic calcium and protein kinase A activity are shown, but the PIE-FLIM approach is broadly applicable to other signaling pathways.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Luz , Microscopia de Fluorescência
10.
Microvasc Res ; 123: 7-13, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30502365

RESUMO

Microvascular perfusion dynamics are vital to physiological function and are frequently dysregulated in injury and disease. Typically studies measure microvascular flow in a few selected vascular segments over limited time, failing to capture spatial and temporal variability. To quantify microvascular flow in a more complete and unbiased way we developed STAFF (Spatial Temporal Analysis of Fieldwise Flow), a macro for FIJI open-source image analysis software. Using high-speed microvascular flow movies, STAFF generates kymographs for every time interval for every vascular segment, calculates flow velocities from red blood cell shadow angles, and outputs the data as color-coded velocity map movies and spreadsheets. In untreated mice, analyses demonstrated profound variation even between adjacent sinusoids over seconds. In acetaminophen-treated mice we detected flow reduction localized to pericentral regions. STAFF is a powerful new tool capable of providing novel insights by enabling measurement of the complex spatiotemporal dynamics of microvascular flow.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Hemodinâmica , Interpretação de Imagem Assistida por Computador/métodos , Microscopia Intravital/métodos , Circulação Hepática , Fígado/irrigação sanguínea , Microcirculação , Microvasos/fisiopatologia , Imagem com Lapso de Tempo/métodos , Acetaminofen , Animais , Automação , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Eritrócitos , Quimografia , Masculino , Camundongos Endogâmicos C57BL , Fluxo Sanguíneo Regional , Software , Análise Espaço-Temporal , Fatores de Tempo
11.
Opt Lett ; 44(16): 3928-3931, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31415514

RESUMO

Fluorescence lifetime imaging microscopy (FLIM) provides additional contrast for fluorophores with overlapping emission spectra. The phasor approach to FLIM greatly reduces the complexity of FLIM analysis and enables a useful image segmentation technique by selecting adjacent phasor points and labeling their corresponding pixels with different colors. This phasor labeling process, however, is empirical and could lead to biased results. In this Letter, we present a novel and unbiased approach to automate the phasor labeling process using an unsupervised machine learning technique, i.e., K-means clustering. In addition, we provide an open-source, user-friendly program that enables users to easily employ the proposed approach. We demonstrate successful image segmentation on 2D and 3D FLIM images of fixed cells and living animals acquired with two different FLIM systems. Finally, we evaluate how different parameters affect the segmentation result and provide a guideline for users to achieve optimal performance.

13.
Drug Metab Dispos ; 46(5): 704-718, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29467212

RESUMO

The bile salt export pump (BSEP) is expressed at the canalicular domain of hepatocytes, where it mediates the elimination of monovalent bile salts into the bile. Inhibition of BSEP is considered a susceptibility factor for drug-induced liver injury that often goes undetected during nonclinical testing. Although in vitro assays exist for screening BSEP inhibition, a reliable and specific method for confirming Bsep inhibition in vivo would be a valuable follow up to a BSEP screening strategy, helping to put a translatable context around in vitro inhibition data, incorporating processes such as metabolism, protein binding, and other exposure properties that are lacking in most in vitro BSEP models. Here, we describe studies in which methods of quantitative intravital microscopy were used to identify dose-dependent effects of two known BSEP/Bsep inhibitors, 2-[4-[4-(butylcarbamoyl)-2-[(2,4-dichlorophenyl)sulfonylamino]phenoxy]-3-methoxyphenyl]acetic acid (AMG-009) and bosentan, on hepatocellular transport of the fluorescent bile salts cholylglycyl amidofluorescein and cholyl-lysyl-fluorescein in rats. Results of these studies demonstrate that the intravital microscopy approach is capable of detecting Bsep inhibition at drug doses well below those found to increase serum bile acid levels, and also indicate that basolateral efflux transporters play a significant role in preventing cytosolic accumulation of bile acids under conditions of Bsep inhibition in rats. Studies of this kind can both improve our understanding of exposures needed to inhibit Bsep in vivo and provide unique insights into drug effects in ways that can improve our ability interpret animal studies for the prediction of human drug hepatotoxicity.


Assuntos
Ácidos e Sais Biliares/metabolismo , Transporte Biológico/fisiologia , Biomarcadores/metabolismo , Corantes Fluorescentes/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Bile/efeitos dos fármacos , Bile/metabolismo , Transporte Biológico/efeitos dos fármacos , Bosentana , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Microscopia/métodos , Fenilacetatos/farmacologia , Ratos , Ratos Wistar , Sulfonamidas/farmacologia
14.
Methods ; 128: 40-51, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28434905

RESUMO

Hepatic solute transport is a complex process whose disruption is associated with liver disease and drug-induced liver injury. Intravital multiphoton fluorescence excitation microscopy provides the spatial and temporal resolution necessary to characterize hepatic transport at the level of individual hepatocytes in vivo and thus to identify the mechanisms and cellular consequences of cholestasis. Here we present an overview of the use of fluorescence microscopy for studies of hepatic transport in living animals, and describe how we have combined methods of intravital microscopy and digital image analysis to dissect the effects of drugs and pathological conditions on the function of hepatic transporters in vivo.


Assuntos
Corantes Fluorescentes , Microscopia Intravital/métodos , Fígado/diagnóstico por imagem , Fígado/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Transporte Biológico/fisiologia , Hepatócitos/metabolismo , Fígado/citologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar
15.
J Am Soc Nephrol ; 28(8): 2420-2430, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28250053

RESUMO

In the live animal, tissue autofluorescence arises from a number of biologically important metabolites, such as the reduced form of nicotinamide adenine dinucleotide. Because autofluorescence changes with metabolic state, it can be harnessed as a label-free imaging tool with which to study metabolism in vivo Here, we used the combination of intravital two-photon microscopy and frequency-domain fluorescence lifetime imaging microscopy (FLIM) to map cell-specific metabolic signatures in the kidneys of live animals. The FLIM images are analyzed using the phasor approach, which requires no prior knowledge of metabolite species and can provide unbiased metabolic fingerprints for each pixel of the lifetime image. Intravital FLIM revealed the metabolic signatures of S1 and S2 proximal tubules to be distinct and resolvable at the subcellular level. Notably, S1 and distal tubules exhibited similar metabolic profiles despite apparent differences in morphology and autofluorescence emission with traditional two-photon microscopy. Time-lapse imaging revealed dynamic changes in the metabolic profiles of the interstitium, urinary lumen, and glomerulus-areas that are not resolved by traditional intensity-based two-photon microscopy. Finally, using a model of endotoxemia, we present examples of the way in which intravital FLIM can be applied to study kidney diseases and metabolism. In conclusion, intravital FLIM of intrinsic metabolites is a bias-free approach with which to characterize and monitor metabolism in vivo, and offers the unique opportunity to uncover dynamic metabolic changes in living animals with subcellular resolution.


Assuntos
Microscopia Intravital , Rim/citologia , Rim/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica , Animais , Rim/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
J Am Soc Nephrol ; 28(7): 2108-2118, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28154201

RESUMO

Analysis of the immune system in the kidney relies predominantly on flow cytometry. Although powerful, the process of tissue homogenization necessary for flow cytometry analysis introduces bias and results in the loss of morphologic landmarks needed to determine the spatial distribution of immune cells. An ideal approach would support three-dimensional (3D) tissue cytometry: an automated quantitation of immune cells and associated spatial parameters in 3D image volumes collected from intact kidney tissue. However, widespread application of this approach is limited by the lack of accessible software tools for digital analysis of large 3D microscopy data. Here, we describe Volumetric Tissue Exploration and Analysis (VTEA) image analysis software designed for efficient exploration and quantitative analysis of large, complex 3D microscopy datasets. In analyses of images collected from fixed kidney tissue, VTEA replicated the results of flow cytometry while providing detailed analysis of the spatial distribution of immune cells in different regions of the kidney and in relation to specific renal structures. Unbiased exploration with VTEA enabled us to discover a population of tubular epithelial cells that expresses CD11C, a marker typically expressed on dendritic cells. Finally, we show the use of VTEA for large-scale quantitation of immune cells in entire human kidney biopsies. In summary, we show that VTEA is a simple and effective tool that supports unique digital interrogation and analysis of kidney tissue from animal models or biobanked human kidney biopsies. We have made VTEA freely available to interested investigators via electronic download.


Assuntos
Citometria por Imagem/métodos , Imageamento Tridimensional , Rim/citologia , Rim/imunologia , Humanos , Túbulos Renais/citologia , Fagócitos , Software
17.
Am J Physiol Cell Physiol ; 312(4): C446-C458, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28100488

RESUMO

Vasculogenesis is a complex process by which endothelial stem and progenitor cells undergo de novo vessel formation. Quantitative assessment of vasculogenesis is a central readout of endothelial progenitor cell functionality. However, current assays lack kinetic measurements. To address this issue, new approaches were developed to quantitatively assess in vitro endothelial colony-forming cell (ECFC) network formation in real time. Eight parameters of network structure were quantified using novel Kinetic Analysis of Vasculogenesis (KAV) software. KAV assessment of structure complexity identified two phases of network formation. This observation guided the development of additional vasculogenic readouts. A tissue cytometry approach was established to quantify the frequency and localization of dividing ECFCs. Additionally, Fiji TrackMate was used to quantify ECFC displacement and speed at the single-cell level during network formation. These novel approaches were then implemented to identify how intrauterine exposure to maternal diabetes mellitus (DM) impairs fetal ECFC vasculogenesis. Fetal ECFCs exposed to maternal DM form fewer initial network structures, which are not stable over time. Correlation analyses demonstrated that ECFC samples with greater division in branches form fewer closed network structures. Additionally, reductions in average ECFC movement over time decrease structural connectivity. Identification of these novel phenotypes utilizing the newly established methodologies provides evidence for the cellular mechanisms contributing to aberrant ECFC vasculogenesis.


Assuntos
Células Endoteliais/fisiologia , Modelos Cardiovasculares , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular/fisiologia , Simulação por Computador , Células Endoteliais/citologia , Humanos , Cinética , Células-Tronco/citologia
18.
Am J Physiol Cell Physiol ; 309(11): C724-35, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26333599

RESUMO

The commercial availability of multiphoton microscope systems has nurtured the growth of intravital microscopy as a powerful technique for evaluating cell biology in the relevant context of living animals. In parallel, new fluorescent protein (FP) biosensors have become available that enable studies of the function of a wide range of proteins in living cells. Biosensor probes that exploit Förster resonance energy transfer (FRET) are among the most sensitive indicators of an array of cellular processes. However, differences between one-photon and two-photon excitation (2PE) microscopy are such that measuring FRET by 2PE in the intravital setting remains challenging. Here, we describe an approach that simplifies the use of FRET-based biosensors in intravital 2PE microscopy. Based on a systematic comparison of many different FPs, we identified the monomeric (m) FPs mTurquoise and mVenus as particularly well suited for intravital 2PE FRET studies, enabling the ratiometric measurements from linked FRET probes using a pair of experimental images collected simultaneously. The behavior of the FPs is validated by fluorescence lifetime and sensitized emission measurements of a set of FRET standards. The approach is demonstrated using a modified version of the AKAR protein kinase A biosensor, first in cells in culture, and then in hepatocytes in the liver of living mice. The approach is compatible with the most common 2PE microscope configurations and should be applicable to a variety of different FRET probes.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Miócitos Cardíacos/química , Animais , Células Cultivadas , Corantes Fluorescentes/análise , Células HEK293 , Humanos , Proteínas Luminescentes/análise , Camundongos , Microscopia Confocal/métodos
19.
Am J Physiol Regul Integr Comp Physiol ; 307(12): R1488-92, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25339682

RESUMO

Clinical studies indicate that hepatic drug transport may be altered in chronic kidney disease (CKD). Uremic solutes associated with CKD have been found to alter the expression and/or activity of hepatocyte transporters in experimental animals and in cultured cells. However, given the complexity and adaptability of hepatic transport, it is not clear whether these changes translate into significant alterations in hepatic transport in vivo. To directly measure the effect of CKD on hepatocyte transport in vivo, we conducted quantitative intravital microscopy of transport of the fluorescent organic anion fluorescein in the livers of rats following 5/6th nephrectomy, an established model of CKD. Our quantitative analysis of fluorescein transport showed that the rate of hepatocyte uptake was reduced by ∼20% in 5/6th nephrectomized rats, consistent with previous observations of Oatp downregulation. However, the overall rate of transport into bile canaliculi was unaffected, suggesting compensatory changes in Mrp2-mediated secretion. Our study suggests that uremia resulting from 5/6th nephrectomy does not significantly impact the overall hepatic clearance of an Oatp substrate.


Assuntos
Fluoresceína/metabolismo , Corantes Fluorescentes/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Insuficiência Renal Crônica/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Ductos Biliares/metabolismo , Transporte Biológico , Modelos Animais de Doenças , Regulação para Baixo , Fluoresceína/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Injeções , Masculino , Microscopia de Fluorescência por Excitação Multifotônica , Nefrectomia , Transportadores de Ânions Orgânicos/metabolismo , Ratos Sprague-Dawley , Insuficiência Renal Crônica/etiologia , Fatores de Tempo
20.
PLoS One ; 19(4): e0293703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630694

RESUMO

Many oncology antibody-drug conjugates (ADCs) have failed to demonstrate efficacy in clinic because of dose-limiting toxicity caused by uptake into healthy tissues. We developed an approach that harnesses ADC affinity to broaden the therapeutic index (TI) using two anti-mesenchymal-epithelial transition factor (MET) monoclonal antibodies (mAbs) with high affinity (HAV) or low affinity (LAV) conjugated to monomethyl auristatin E (MMAE). The estimated TI for LAV-ADC was at least 3 times greater than the HAV-ADC. The LAV- and HAV-ADCs showed similar levels of anti-tumor activity in the xenograft model, while the 111In-DTPA studies showed similar amounts of the ADCs in HT29 tumors. Although the LAV-ADC has ~2-fold slower blood clearance than the HAV-ADC, higher liver toxicity was observed with HAV-ADC. While the SPECT/CT 111In- and 124I- DTPA findings showed HAV-ADC has higher accumulation and rapid clearance in normal tissues, intravital microscopy (IVM) studies confirmed HAV mAb accumulates within hepatic sinusoidal endothelial cells while the LAV mAb does not. These results demonstrated that lowering the MET binding affinity provides a larger TI for MET-ADC. Decreasing the affinity of the ADC reduces the target mediated drug disposition (TMDD) to MET expressed in normal tissues while maintaining uptake/delivery to the tumor. This approach can be applied to multiple ADCs to improve the clinical outcomes.


Assuntos
Imunoconjugados , Radioisótopos do Iodo , Humanos , Animais , Preparações Farmacêuticas , Células Endoteliais/metabolismo , Linhagem Celular Tumoral , Imunoconjugados/uso terapêutico , Ácido Pentético , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa