Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 23(17): 22667-75, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368235

RESUMO

We demonstrate a significant resolution enhancement beyond the conventional limit in multiphoton microscopy (MPM) using saturated excitation of fluorescence. Our technique achieves super-resolved imaging by temporally modulating the excitation laser-intensity and demodulating the higher harmonics from the saturated fluorescence signal. The improvement of the lateral and axial resolutions is measured on a sample of fluorescent microspheres. While the third harmonic already provides an enhanced resolution, we show that a further improvement can be obtained with an appropriate linear combination of the demodulated harmonics. Finally, we present in vitro imaging of fluorescent microspheres incorporated in HeLa cells to show that this technique performs well in biological samples.

2.
Opt Express ; 22(9): 10868-81, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921786

RESUMO

Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

3.
Opt Express ; 20(20): 22783-95, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23037429

RESUMO

Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.


Assuntos
Metodologias Computacionais , Dispositivos Ópticos , Semicondutores , Processamento de Sinais Assistido por Computador/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
4.
IEEE Trans Neural Netw Learn Syst ; 28(11): 2686-2698, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28113606

RESUMO

Reservoir computing is a bioinspired computing paradigm for processing time-dependent signals. The performance of its analog implementation is comparable to other state-of-the-art algorithms for tasks such as speech recognition or chaotic time series prediction, but these are often constrained by the offline training methods commonly employed. Here, we investigated the online learning approach by training an optoelectronic reservoir computer using a simple gradient descent algorithm, programmed on a field-programmable gate array chip. Our system was applied to wireless communications, a quickly growing domain with an increasing demand for fast analog devices to equalize the nonlinear distorted channels. We report error rates up to two orders of magnitude lower than previous implementations on this task. We show that our system is particularly well suited for realistic channel equalization by testing it on a drifting and a switching channel and obtaining good performances.

5.
Sci Rep ; 6: 22381, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26935166

RESUMO

Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa