Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125678

RESUMO

Moringa oleifera is widely grown throughout the tropics and increasingly used for its therapeutic and nutraceutical properties. These properties are attributed to potent antioxidant and metabolism regulators, including glucosinolates/isothiocyanates as well as flavonoids, polyphenols, and phenolic acids. Research to date largely consists of geographically limited studies that only examine material available locally. These practices make it unclear as to whether moringa samples from one area are superior to another, which would require identifying superior variants and distributing them globally. Alternatively, the finding that globally cultivated moringa material is essentially functionally equivalent means that users can easily sample material available locally. We brought together accessions of Moringa oleifera from four continents and nine countries and grew them together in a common garden. We performed a metabolomic analysis of leaf extracts (MOLE) using an LC-MSMS ZenoTOF 7600 mass spectrometry system. The antioxidant capacity of leaf samples evaluated using the Total Antioxidant Capacity assay did not show any significant difference between extracts. MOLE samples were then tested for their antioxidant activity on C2C12 myotubes challenged with an oxidative insult. Hydrogen peroxide (H2O2) was added to the myotubes after pretreatment with different extracts. H2O2 exposure caused an increase in cell death that was diminished in all samples pretreated with moringa extracts. Our results show that Moringa oleifera leaf extract is effective in reducing the damaging effect of H2O2 in C2C12 myotubes irrespective of geographical origin. These results are encouraging because they suggest that the use of moringa for its therapeutic benefits can proceed without the need for the lengthy and complex global exchange of materials between regions.


Assuntos
Antioxidantes , Metabolômica , Moringa oleifera , Fibras Musculares Esqueléticas , Extratos Vegetais , Folhas de Planta , Moringa oleifera/química , Moringa oleifera/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Metabolômica/métodos , Animais , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Linhagem Celular , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Metaboloma/efeitos dos fármacos
2.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39201283

RESUMO

Biological age, reflecting the cumulative damage in the body over a lifespan, is a dynamic measure more indicative of individual health than chronological age. Accelerated aging, when biological age surpasses chronological age, is implicated in poorer clinical outcomes, especially for breast cancer (BC) survivors undergoing treatments. This preliminary study investigates the impact of a 16-week online supervised physical activity (PA) intervention on biological age in post-surgery female BC patients. Telomere length was measured using qPCR, and the ELOVL2-based epigenetic clock was assessed via DNA methylation pyrosequencing of the ELOVL2 promoter region. Telomere length remained unchanged, but the ELOVL2 epigenetic clock indicated a significant decrease in biological age in the PA group, suggesting the potential of PA interventions to reverse accelerated aging processes in BC survivors. The exercise group showed improved cardiovascular fitness, highlighting PA's health impact. Finally, the reduction in biological age, as measured by the ELOVL2 epigenetic clock, was significantly associated with improvements in cardiovascular fitness and handgrip strength, supporting improved recovery. Epigenetic clocks can potentially assess health status and recovery progress in BC patients, identifying at-risk individuals in clinical practice. This study provides potential and valuable insights into how PA benefits BC survivors' health, supporting the immediate benefits of a 16-week exercise intervention in mitigating accelerated aging. The findings could suggest a holistic approach to improving the health and recovery of post-surgery BC patients.


Assuntos
Envelhecimento , Neoplasias da Mama , Metilação de DNA , Epigênese Genética , Exercício Físico , Elongases de Ácidos Graxos , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Pessoa de Meia-Idade , Envelhecimento/genética , Elongases de Ácidos Graxos/genética , Idoso , Adulto , Regiões Promotoras Genéticas , Telômero/genética
3.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373372

RESUMO

Skeletal muscle is continuously exposed during its activities to mechanical/oxidative damage [...].


Assuntos
Músculo Esquelético , Estresse Oxidativo , Estresse Oxidativo/fisiologia , Músculo Esquelético/metabolismo
4.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139211

RESUMO

Gender-related methodology in biomedical sciences receives considerable attention, with numerous studies highlighting biological differences between cisgender males and females. These differences influence the clinical symptoms of various diseases and impact therapeutic approaches. In this in vitro study, we investigate the potential role of sex-chromosome-related dimorphism on steroidogenic enzymes, androgen receptor (AR) expression, and cellular translocation in primary human skeletal muscle cells before and after exposure to testosterone. We analyzed 46XY and 46XX cells for 17ß-hydroxysteroid dehydrogenase (17ß-HSD), 5α-reductase (5α-R2), aromatase (Cyp-19), and AR gene expression. We also compared AR expression and intracellular translocation after increasing exposure to testosterone. At baseline, we observed higher mRNA expression for 5α-R2 and AR in 46XY cells and higher Cyp-19 mRNA expression in 46XX cells. Following testosterone exposure, we observed an increase in AR expression and translocation in 46XX cells, even at the lowest dose of 0.5 nM, while significant changes in 46XY cells were observed only from 10 nM. Our in vitro results demonstrate that the diverse sex chromosome assets reflect important differences in muscle steroidogenesis. They support the concept that chromosomal disparities between males and females, even in vitro, lead to pivotal variations in cellular physiology and response. This understanding represents a crucial starting point in gender medicine, ensuring a precise approach in clinical practice, sports, and exercise settings and facilitating the translation of in vitro data to in vivo applicability.


Assuntos
Receptores Androgênicos , Testosterona , Masculino , Feminino , Humanos , Testosterona/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Caracteres Sexuais , Androgênios/metabolismo , Oxirredutases/metabolismo , Colestenona 5 alfa-Redutase/genética , Músculo Esquelético/metabolismo , Cromossomos Sexuais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232289

RESUMO

A central feature of the skeletal muscle is its ability to regenerate through the activation, by environmental signals, of satellite cells. Once activated, these cells proliferate as myoblasts, and defects in this process profoundly affect the subsequent process of regeneration. High levels of reactive oxygen species such as hydrogen peroxide (H2O2) with the consequent formation of oxidized macromolecules increase myoblasts' cell death and strongly contribute to the loss of myoblast function. Recently, particular interest has turned towards the beneficial effects on muscle of the naturally occurring polyamine spermidine (Spd). In this work, we tested the hypothesis that Spd, upon oxidative challenge, would restore the compromised myoblasts' viability and redox status. The effects of Spd in combination with aminoguanidine (Spd-AG), an inhibitor of bovine serum amine oxidase, on murine C2C12 myoblasts treated with a mild dose of H2O2 were evaluated by analyzing: (i) myoblast viability and recovery from wound scratch; (ii) redox status and (iii) polyamine (PAs) metabolism. The treatment of C2C12 myoblasts with Spd-AG increased cell number and accelerated scratch wound closure, while H2O2 exposure caused redox status imbalance and cell death. The combined treatment with Spd-AG showed an antioxidant effect on C2C12 myoblasts, partially restoring cellular total antioxidant capacity, reducing the oxidized glutathione (GSH/GSSG) ratio and increasing cell viability through a reduction in cell death. Moreover, Spd-AG administration counteracted the induction of polyamine catabolic genes and PA content decreased due to H2O2 challenges. In conclusion, our data suggest that Spd treatment has a protective role in skeletal muscle cells by restoring redox balance and promoting recovery from wound scratches, thus making myoblasts able to better cope with an oxidative insult.


Assuntos
Peróxido de Hidrogênio , Espermidina , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Proliferação de Células , Dissulfeto de Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Camundongos , Mioblastos/metabolismo , Oxirredução , Oxirredutases/metabolismo , Poliaminas/metabolismo , Poliaminas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espermidina/metabolismo , Espermidina/farmacologia
6.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35743011

RESUMO

Skeletal muscle is a tissue that has recently been recognized for its ability to produce androgens under physiological conditions. The steroidogenesis process is known to be negatively influenced by reactive oxygen species (ROS) in reproductive Leydig and ovary cells, while their effect on muscle steroidogenesis is still an unexplored field. Muscle cells are continuously exposed to ROS, resulting from both their metabolic activity and the surrounding environment. Interestingly, the regulation of signaling pathways, induced by mild ROS levels, plays an important role in muscle fiber adaptation to exercise, in a process that also elicits a significant modulation in the hormonal response. The aim of the present study was to investigate whether ROS could influence steroidogenesis in skeletal muscle cells by evaluating the release of testosterone (T) and dihydrotestosterone (DHT), as well as the evaluation of the relative expression of the key steroidogenic enzymes 5α-reductase, 3ß-hydroxysteroid dehydrogenase (HSD), 17ß-HSD, and aromatase. C2C12 mouse myotubes were exposed to a non-cytotoxic concentration of hydrogen peroxide (H2O2), a condition intended to reproduce, in vitro, one of the main stimuli linked to the process of homeostasis and adaptation induced by exercise in skeletal muscle. Moreover, the influence of tadalafil (TAD), a phosphodiesterase 5 inhibitor (PDE5i) originally used to treat erectile dysfunction but often misused among athletes as a "performance-enhancing" drug, was evaluated in a single treatment or in combination with H2O2. Our data showed that a mild hydrogen peroxide exposure induced the release of DHT, but not T, and modulated the expression of the enzymes involved in steroidogenesis, while TAD treatment significantly reduced the H2O2-induced DHT release. This study adds a new piece of information about the adaptive skeletal muscle cell response to an oxidative environment, revealing that hydrogen peroxide plays an important role in activating muscle steroidogenesis.


Assuntos
Di-Hidrotestosterona , Peróxido de Hidrogênio , Animais , Di-Hidrotestosterona/metabolismo , Di-Hidrotestosterona/farmacologia , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testosterona/metabolismo
7.
Molecules ; 26(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443628

RESUMO

Moringa oleifera is a multi-purpose herbal plant with numerous health benefits. In skeletal muscle cells, Moringa oleifera leaf extract (MOLE) acts by increasing the oxidative metabolism through the SIRT1-PPARα pathway. SIRT1, besides being a critical energy sensor, is involved in the activation related to redox homeostasis of transcription factors such as the nuclear factor erythroid 2-related factor (Nrf2). The aim of the present study was to evaluate in vitro the capacity of MOLE to influence the redox status in C2C12 myotubes through the modulation of the total antioxidant capacity (TAC), glutathione levels, Nrf2 and its target gene heme oxygenase-1 (HO-1) expression, as well as enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and transferase (GST). Moreover, the impact of MOLE supplementation on lipid peroxidation and oxidative damage (i.e., TBARS and protein carbonyls) was evaluated. Our results highlight for the first time that MOLE increased not only Nrf2 and HO-1 protein levels in a dose-dependent manner, but also improved glutathione redox homeostasis and the enzyme activities of CAT, SOD, GPx and GST. Therefore, it is intriguing to speculate that MOLE supplementation could represent a valuable nutrition for the health of skeletal muscles.


Assuntos
Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Moringa oleifera/química , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Regulação para Cima/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Linhagem Celular , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Homeostase/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo
8.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365773

RESUMO

Oxidative stress linked to vascular damage plays an important role in the pathogenesis of systemic sclerosis (SSc). Indeed, vascular damage at nailfold capillaroscopy in patients with Raynaud's Phenomenon (RP) is a major risk factor for the development of SSc together with the presence of specific autoantiobodies. Here, we investigated the effects of the phosphodiesterase type 5 inhibitor (PDE5i) sildenafil, currently used in the management of RP, in modulating the proinflammatory response of dermal fibroblasts to oxidative stress in vitro. Human fibroblasts isolated from SSc patients and healthy controls were exposed to exogenous reactive oxygen species (ROS) (100 µM H2O2), in the presence or absence of sildenafil (1 µM). Treatment with sildenafil significantly reduced dermal fibroblast gene expression and cellular release of IL-6, known to play a central role in the pathogenesis of tissue damage in SSc and IL-8, directly induced by ROS. This reduction was associated with suppression of STAT3-, ERK-, NF-κB-, and PKB/AKT-dependent pathways. Our findings support the notion that the employment of PDE5i in the management of RP may be explored for its efficacy in modulating the oxidative stress-induced proinflammatory activation of dermal fibroblasts in vivo and may ultimately aid in the prevention of tissue damage caused by SSc.


Assuntos
Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Interleucina-6/genética , Interleucina-8/genética , Inibidores da Fosfodiesterase 5/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Citrato de Sildenafila/farmacologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo , Transcrição Gênica
9.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153123

RESUMO

Skeletal muscle atrophy is a pathological condition so far without effective treatment and poorly understood at a molecular level. Emerging evidence suggest a key role for circular RNAs (circRNA) during myogenesis and their deregulation has been reported to be associated with muscle diseases. Spermine oxidase (SMOX), a polyamine catabolic enzyme plays a critical role in muscle differentiation and the existence of a circRNA arising from SMOX gene has been recently identified. In this study, we evaluated the expression profile of circular and linear SMOX in both C2C12 differentiation and dexamethasone-induced myotubes atrophy. To validate our findings in vivo their expression levels were also tested in two murine models of amyotrophic lateral sclerosis: SOD1G93A and hFUS+/+, characterized by progressive muscle atrophy. During C2C12 differentiation, linear and circular SMOX show the same trend of expression. Interestingly, in atrophy circSMOX levels significantly increased compared to the physiological state, in both in vitro and in vivo models. Our study demonstrates that SMOX represents a new player in muscle physiopathology and provides a scientific basis for further investigation on circSMOX RNA as a possible new therapeutic target for the treatment of muscle atrophy.


Assuntos
Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , RNA Circular/fisiologia , RNA Mensageiro/fisiologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/fisiologia , RNA não Traduzido/fisiologia , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase-1/genética , Poliamina Oxidase
10.
Eur J Appl Physiol ; 118(5): 1021-1031, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29511920

RESUMO

PURPOSE: To examine the effect of acute quercetin (Q) ingestion on neuromuscular function, biomarkers of muscle damage, and rate of perceived exertion (RPE) in response to an acute bout of resistance training. METHODS: 10 young men (22.1 ± 1.8 years, 24.1 ± 3.1 BMI) participated in a randomized, double-blind, crossover study. Subjects consumed Q (1 g/day) or placebo (PLA) 3 h prior to a resistance training session which consisted of 3 sets of 8 repetitions at 80% of the one repetition maximum (1RM) completed bilaterally for eight different resistance exercises. Electromyographic (EMG) signals were recorded from the knee extensor muscles during maximal isometric (MVIC) and isokinetic voluntary contractions, and during an isometric fatiguing test. Mechanical and EMG signals, biomarkers of cell damage, and RPE score were measured PRE, immediately POST, and 24 h (blood indices only) following the resistance exercise. RESULTS: After a single dose of Q, the torque-velocity curve of knee extensors was enhanced and after the resistance exercise, subjects showed a lower MVIC reduction (Q: 0.91 ± 6.10%, PLA: 8.66 ± 5.08%) with a greater rate of torque development (+ 10.6%, p < 0.005) and neuromuscular efficiency ratio (+ 28.2%, p < 0.005). Total volume of the resistance exercises was significantly greater in Q (1691.10 ± 376.71 kg rep) compared to PLA (1663.65 ± 378.85 kg rep) (p < 0.05) with a comparable RPE score. No significant differences were found in blood marker between treatments. CONCLUSIONS: The acute ingestion of Q may enhance the neuromuscular performance during and after a resistance training session.


Assuntos
Antioxidantes/farmacologia , Músculo Esquelético/efeitos dos fármacos , Quercetina/farmacologia , Treinamento Resistido , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Humanos , Masculino , Fadiga Muscular , Força Muscular , Músculo Esquelético/fisiologia , Mialgia/prevenção & controle , Quercetina/administração & dosagem , Quercetina/uso terapêutico , Adulto Jovem
11.
Curr Sports Med Rep ; 16(6): 443-447, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29135645

RESUMO

Phosphodiesterase type 5 inhibitors (PDE5i) (e.g., sildenafil, tadalafil, vardenafil, and avanafil) are drugs commonly used to treat erectile dysfunction, pulmonary arterial hypertension, and benign prostatic hyperplasia. PDE5i are not prohibited by the World Anti-Doping Agency (WADA) but are alleged to be frequently misused by healthy athletes to improve sporting performance. In vitro and in vivo studies have reported various effects of PDE5i on cardiovascular, muscular, metabolic, and neuroendocrine systems and the potential, therefore, to enhance performance of healthy athletes during training and competition. This suggests well-controlled research studies to examine the ergogenic effects of PDE5i on performance during activities that simulate real sporting situations are warranted to determine if PDE5i should be included on the prohibited WADA list. In the meantime, there is concern that some otherwise healthy athletes will continue to misuse PDE5i to gain an unfair competitive advantage over their competitors.


Assuntos
Desempenho Atlético , Dopagem Esportivo , Substâncias para Melhoria do Desempenho/farmacologia , Inibidores da Fosfodiesterase 5/farmacologia , Humanos
12.
Eur J Appl Physiol ; 115(3): 531-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25381629

RESUMO

INTRODUCTION: Physical exercise is associated with enhanced production of reactive oxygen species, which if uncontrolled can result in tissue injury. Phosphodiesterase type 5 inhibitors (PDE5i) exhibit protective effect against oxidative stress, both in animals and healthy/unhealthy humans. However, the effect of a chronic administration of PDE5i, particularly combined with physical exercise, has never been investigated. PURPOSE: The present study was designed to evaluate the effect of the long-acting PDE5i tadalafil on oxidative status and muscle damage after exhaustive exercise in healthy males included in a double-blind crossover trial. HYPOTHESIS: Tadalafil, having a putative antioxidant activity, may reduce oxidative damage after strenuous exercise. METHODS: Each volunteer randomly received two tablets of placebo or tadalafil (20 mg/day) with 36 h of interval before performing exhaustive exercise. After 2 weeks of washout, the volunteers were crossed over. Blood samples were collected immediately before exercise, immediately after, and during recovery (15, 30, 60 min). Plasma total antioxidant status, glutathione homeostasis (GSH/GSSG), malondialdehyde (MDA), protein carbonyls, creatine kinase (CK), lactate dehydrogenase (LDH) and the inflammatory cytokine interleukin 6 were assessed. RESULTS: Tadalafil administration per se affected redox homeostasis (GSH/GSSG -36%; p < 0.05), cellular (CK +75% and LDH +36%; p < 0.05) and oxidative damage (MDA +41% and protein carbonyls +50%; p < 0.05) markers. The exhaustive exercise increased all the above-reported biochemical parameters, with subjects from the tadalafil group showing significantly higher values with respect to the placebo group. CONCLUSIONS: A prolonged exposure to tadalafil decreases antioxidant capacity at resting condition, therefore making subjects more susceptible to the oxidative stress induced by an exhaustive bout of exercise.


Assuntos
Antioxidantes/farmacologia , Carbolinas/farmacologia , Exercício Físico , Mialgia/tratamento farmacológico , Inibidores da Fosfodiesterase 5/farmacologia , Adulto , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Biomarcadores/sangue , Carbolinas/administração & dosagem , Carbolinas/uso terapêutico , Creatina Quinase/sangue , Feminino , Glutationa/sangue , Humanos , Interleucina-6/sangue , L-Lactato Desidrogenase/sangue , Masculino , Malondialdeído/sangue , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mialgia/sangue , Mialgia/etiologia , Estresse Oxidativo , Inibidores da Fosfodiesterase 5/administração & dosagem , Inibidores da Fosfodiesterase 5/uso terapêutico , Carbonilação Proteica , Tadalafila
13.
Biology (Basel) ; 13(9)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39336127

RESUMO

Cancer remains a major challenge in medicine, prompting exploration of innovative therapies. Recent studies suggest that exercise-derived extracellular vesicles (EVs) may offer potential anti-cancer benefits. These small, membrane-bound particles, including exosomes, carry bioactive molecules such as proteins and RNA that mediate intercellular communication. Exercise has been shown to increase EV secretion, influencing physiological processes like tissue repair, inflammation, and metabolism. Notably, preclinical studies have demonstrated that exercise-derived EVs can inhibit tumor growth, reduce metastasis, and enhance treatment response. For instance, in a study using animal models, exercise-derived EVs were shown to suppress tumor proliferation in breast and colon cancers. Another study reported that these EVs reduced metastatic potential by decreasing the migration and invasion of cancer cells. Additionally, exercise-induced EVs have been found to enhance the effectiveness of chemotherapy by sensitizing tumor cells to treatment. This review highlights the emerging role of exercise-derived circulating biomolecules, particularly EVs, in cancer biology. It discusses the mechanisms through which EVs impact cancer progression, the challenges in translating preclinical findings to clinical practice, and future research directions. Although research in this area is still limited, current findings suggest that EVs could play a crucial role in spreading molecules that promote better health in cancer patients. Understanding these EV profiles could lead to future therapies, such as exercise mimetics or targeted drugs, to treat cancer.

14.
Redox Biol ; 70: 103033, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38211440

RESUMO

Most anticancer treatments act on oxidative-stress pathways by producing reactive oxygen species (ROS) to kill cancer cells, commonly resulting in consequential drug-induced systemic cytotoxicity. Physical activity (PA) has arisen as an integrative cancer therapy, having positive health effects, including in redox-homeostasis. Here, we investigated the impact of an online supervised PA program on promoter-specific DNA methylation, and corresponding gene expression/activity, in 3 antioxidants- (SOD1, SOD2, and CAT) and 3 breast cancer (BC)-related genes (BRCA1, L3MBTL1 and RASSF1A) in a population-based sample of women diagnosed with primary BC, undergoing medical treatment. We further examined mechanisms involved in methylating and demethylating pathways, predicted biological pathways and interactions of exercise-modulated molecules, and the functional relevance of modulated antioxidant markers on parameters related to aerobic capacity/endurance, physical fatigue and quality of life (QoL). PA maintained levels of SOD activity in blood plasma, and at the cellular level significantly increased SOD2 mRNA (≈+77 %), contrary to their depletion due to medical treatment. This change was inversely correlated with DNA methylation in SOD2 promoter (≈-20 %). Similarly, we found a significant effect of PA only on L3MBTL1 promoter methylation (≈-25 %), which was inversely correlated with its mRNA (≈+43 %). Finally, PA increased TET1 mRNA levels (≈+15 %) and decreased expression of DNMT3B mRNA (≈-28 %). Our results suggest that PA-modulated DNA methylation affects several signalling pathways/biological activities involved in the cellular oxidative stress response, chromatin organization/regulation, antioxidant activity and DNA/protein binding. These changes may positively impact clinical outcomes and improve the response to cancer treatment in post-surgery BC patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/cirurgia , Qualidade de Vida , Estudos Longitudinais , Metilação de DNA , Exercício Físico , Oxirredução , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Progressão da Doença , RNA Mensageiro/metabolismo , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética
15.
Antioxidants (Basel) ; 12(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238004

RESUMO

Breast cancer (BC) is one of the most commonly diagnosed types of cancer in women. Oxidative stress may contribute to cancer etiology through several mechanisms. A large body of evidence indicates that physical activity (PA) has positive effects on different aspects of BC evolution, including mitigation of negative effects induced by medical treatment. With the aim to verify the capacity of PA to counteract negative effects of BC treatment on systemic redox homeostasis in postsurgery female BC patients, we have examined the modulation of circulating levels of oxidative stress and inflammation markers. Moreover, we evaluated the impacts on physical fitness and mental well-being by measuring functional parameters, body mass index, body composition, health-related quality of life (QoL), and fatigue. Our investigation revealed that PA was effective in maintaining plasma levels of superoxide dismutase (SOD) activity and tGSH, as well as peripheral blood mononuclear cells' (PBMCs) mRNA levels of SOD1 and heat-shock protein 27. Moreover, we found a significant decrease in plasma interleukin-6 (≈0.57 ± 0.23-fold change, p < 0.05) and increases in both interleukin-10 (≈1.15 ± 0.35-fold change, p < 0.05) and PBMCs' mRNA level of SOD2 (≈1.87 ± 0.36-fold change, p < 0.05). Finally, PA improves functional parameters (6 min walking test, ≈+6.50%, p < 0.01; Borg, ≈-58.18%, p < 0.01; sit-and-reach, ≈+250.00%, p < 0.01; scratch right, ≈-24.12%, and left, ≈-18.81%, p < 0.01) and body composition (free fat mass, ≈+2.80%, p < 0.05; fat mass, ≈-6.93%, p < 0.05) as well as the QoL (physical function, ≈+5.78%, p < 0.05) and fatigue (cognitive fatigue, ≈-60%, p < 0.05) parameters. These results suggest that a specific PA program not only is effective in improving functional and anthropometric parameters but may also activate cellular responses through a multitude of actions in postsurgery BC patients undergoing adjuvant therapy. These may include modulation of gene expression and protein activity and impacting several signaling pathways/biological activities involved in tumor-cell growth; metastasis; and inflammation, as well as moderating distress symptoms known to negatively affect QoL.

16.
Antioxidants (Basel) ; 11(8)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35892637

RESUMO

The imbalance between reactive oxygen species (ROS) production and antioxidant defense systems leads to macromolecule and tissue damage as a result of cellular oxidative stress. This phenomenon is considered a key factor in fatigue and muscle damage following chronic or high-intensity physical exercise. In the present study, the antioxidant effect of Moringa oleifera leaf extract (MOLE) was evaluated in C2C12 myotubes exposed to an elevated hydrogen peroxide (H2O2) insult. The capacity of the extract to influence the myotube redox status was evaluated through an analysis of the total antioxidant capacity (TAC), glutathione homeostasis (GSH and GSSG), total free thiols (TFT), and thioredoxin (Trx) activity, as well as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and transferase (GST). Moreover, the ability of MOLE to mitigate the stress-induced peroxidation of lipids and oxidative damage (TBARS and protein carbonyls) was also evaluated. Our data demonstrate that MOLE pre-treatment mitigates the highly stressful effects of H2O2 in myotubes (1 mM) by restoring the redox status (TFT, Trx, and GSH/GSSG ratio) and increasing the antioxidant enzymatic system (CAT, SOD, GPx, GST), thereby significantly reducing the TBARs and PrCAR levels. Our study provides evidence that MOLE supplementation has antioxidant potential, allowing myotubes better able to cope with an oxidative insult and, therefore, could represent a useful nutritional strategy for the preservation of muscle well-being.

17.
Artigo em Inglês | MEDLINE | ID: mdl-36011938

RESUMO

Although exercise is associated with improved health in many medical conditions, little is known about the possible influences of physical activity (PA) habits pre- and post- a diagnosis of systemic sclerosis (SSc) on disease activity and progression. This cross-sectional study assessed, for the first time, self-reported pre- and post-diagnostic PA levels with the aim to verify if changes in these levels were correlated with demographic/anthropometric data (e.g., weight, height, gender, age, BMI), disease duration, diagnostic/clinical parameters (e.g., skin involvement, pulmonary hemodynamic/echocardiographic data, disease activity) related to disease activity and progression, and quality of life in a population-based sample of patients with SSc. Adult participants (n = 34, age 56.6 ± 13.3 years) with SSc (limited cutaneous SSc, lcSSc, n = 20; diffuse cutaneous SSc, dcSSc, n = 9; sine scleroderma SSc, n = 5) were enrolled at the Division of Rheumatology and Clinical Immunology of the Humanitas Research Hospital. All medical data were recorded during periodic clinical visits by a rheumatologist. Moreover, all subjects included in this study completed extensive questionnaires to evaluate their health-related quality of life (HRQOL), and others related to health-related physical activity performed before (PRE) and after (POST) the diagnosis of disease. The linear regression analysis has shown that either a high Sport_index or Leisure_index in the PRE-diagnostic period was correlated with lower disease duration in dcSSc patients. Physical load during sport activity and leisure time accounted for ~61.1% and ~52.6% of the individual variation in disease duration, respectively. In lcSSc patients, a high PRE value related to physical load during sporting activities was correlated with a low pulmonary artery systolic pressure (sPAP) and the POST value of the Work_index was positively correlated with the left ventricular ejection fraction (LVEF), and negatively with creatine kinase levels (CK). Interestingly, the univariate analysis showed that Work_index accounts for ~29.4% of the variance in LVEF. Our analysis clearly reinforces the concept that high levels of physical load may play a role in primary prevention-delaying the onset of the disease in those subjects with a family history of SSc-as well as in secondary prevention, improving SSc management through a positive impact on different clinical parameters of the disease. However, it remains a priority to identify a customized physical load in order to minimize the possible negative effects of PA.


Assuntos
Esclerodermia Difusa , Escleroderma Sistêmico , Adulto , Idoso , Estudos Transversais , Progressão da Doença , Exercício Físico , Humanos , Pessoa de Meia-Idade , Qualidade de Vida , Esclerodermia Difusa/complicações , Esclerodermia Difusa/diagnóstico , Volume Sistólico , Função Ventricular Esquerda
18.
Artigo em Inglês | MEDLINE | ID: mdl-34639267

RESUMO

Background: The phosphodiesterase type 5 inhibitor (PDE5I) tadalafil, in addition to its therapeutic role, has shown antioxidant effects in different in vivo models. Supplementation with antioxidants has received interest as a suitable tool for preventing or reducing exercise-related oxidative stress, possibly leading to the improvement of sport performance in athletes. However, the use/abuse of these substances must be evaluated not only within the context of amateur sport, but especially in competitions where elite athletes are more exposed to stressful physical practice. To date, very few human studies have addressed the influence of the administration of PDE5Is on redox balance in subjects with a fitness level comparable to elite athletes; therefore, the aim of this study was to investigate for the first time whether acute ingestion of tadalafil could affect plasma markers related to cellular damage, redox homeostasis, and blood polyamines levels in healthy subjects with an elevated cardiorespiratory fitness level. Methods: Healthy male volunteers (n = 12), with a VO2max range of 40.1-56.0 mL/(kg × min), were administered with a single dose of tadalafil (20 mg). Plasma molecules related to muscle damage and redox-homeostasis, such as creatine kinase (CK), lactate dehydrogenase (LDH), total antioxidant capacity (TAC), reduced/oxidized glutathione ratio (GSH/GSSG), free thiols (FTH), antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)), as well as thiobarbituric acid reactive substances (TBARs), protein carbonyls (PrCAR), and polyamine levels (spermine (Spm) and spermidine (Spd)) were evaluated immediately before and 2, 6 and 24 hours after the acute tadalafil administration. Results: A single tadalafil administration induced an increase in CK and LDH plasma levels 24 after consumption. No effects were observed on redox homeostasis or antioxidant enzyme activities, and neither were they observed on the oxidation target molecules or polyamines levels. Conclusion: Our results show that in subjects with an elevated fitness level, a single administration of tadalafil induced a significant increase in muscle damage target without affecting plasma antioxidant status.


Assuntos
Glutationa , Poliaminas , Antioxidantes , Catalase/metabolismo , Exercício Físico , Glutationa/metabolismo , Glutationa Peroxidase , Homeostase , Humanos , Masculino , Oxirredução , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Tadalafila
19.
Artigo em Inglês | MEDLINE | ID: mdl-34574758

RESUMO

Breast cancer (BC) is the most commonly diagnosed cancer among women worldwide and the most common cause of cancer-related death. To date, it is still a challenge to estimate the magnitude of the clinical impact of physical activity (PA) on those parameters producing significative changes in future BC risk and disease progression. However, studies conducted in recent years highlight the role of PA not only as a protective factor for the development of ER+ breast cancer but, more generally, as a useful tool in the management of BC treatment as an adjuvant to traditional therapies. In this review, we focused our attention on data obtained from human studies analyzing, at each level of disease prevention (i.e., primary, secondary, tertiary and quaternary), the positive impact of PA/exercise in ER+ BC, a subtype representing approximately 70% of all BC diagnoses. Moreover, given the importance of estrogen receptors and body composition (i.e., adipose tissue) in this subtype of BC, an overview of their role will also be made throughout this review.


Assuntos
Neoplasias da Mama , Composição Corporal , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/prevenção & controle , Estrogênios , Exercício Físico , Feminino , Humanos , Pós-Menopausa , Fatores de Risco
20.
Front Endocrinol (Lausanne) ; 12: 745959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803913

RESUMO

Background: Prolonged or unaccustomed eccentric exercise may cause muscle damage and depending from its extent, this event negatively affects physical performance. Objectives: The aim of the present investigation was to evaluate, in humans, the effect of the flavonoid quercetin on circulating levels of the anabolic insulin-like growth factor 1 (IGF-I) and insulin-like growth factor 2 (IGF-II), produced during the recovery period after an eccentric-induced muscle damage (EIMD). Methods: A randomized, double-blind, crossover study has been performed; twelve young men ingested quercetin (1 g/day) or placebo for 14 days and then underwent an eccentric-induced muscle damaging protocol. Blood samples were collected, and cell damage markers [creatine kinase (CK), lactate dehydrogenase (LDH) and myoglobin (Mb)], the inflammatory responsive interleukin 6 (IL-6), IGF-I and IGF-II levels were evaluated before the exercise and at different recovery times from 24 hours to 7 days after EIMD. Results: We found that, in placebo treatment the increase in IGF-I (72 h) preceded IGF-II increase (7 d). After Q supplementation there was a more marked increase in IGF-I levels and notably, the IGF-II peak was found earlier, compared to placebo, at the same time of IGF-I (72 h). Quercetin significantly reduced plasma markers of cell damage [CK (p<0.005), LDH (p<0.001) and Mb (p<0.05)] and the interleukin 6 level [IL-6 (p<0.05)] during recovery period following EIMD compared to placebo. Conclusions: Our data are encouraging about the use of quercetin as dietary supplementation strategy to adopt in order to mitigate and promote a faster recovery after eccentric exercise as suggested by the increase in plasma levels of the anabolic factors IGF-I and IGF-II.


Assuntos
Exercício Físico/fisiologia , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Quercetina/farmacologia , Adolescente , Adulto , Estudos Cross-Over , Método Duplo-Cego , Humanos , Itália , Masculino , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular/efeitos dos fármacos , Amplitude de Movimento Articular/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa