Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875177

RESUMO

The Fusarium head blight (FHB) pathogen Fusarium graminearum produces the trichothecene mycotoxin deoxynivalenol (DON) and reduces wheat yield and grain quality. Spring wheat (Triticum aestivum L.) genotype CB037 was transformed with constitutive expression (CE) constructs containing sorghum (Sorghum bicolor L. (Moench)) genes encoding monolignol biosynthetic enzymes, caffeoyl-Coenzyme A (CoA) 3-O-methyltransferase (SbCCoAOMT), 4-coumarate-CoA ligase (Sb4CL), or coumaroyl shikimate 3-hydroxylase (SbC3'H), or monolignol pathway transcriptional activator, SbMyb60. Spring wheats were screened for Type I (resistance to initial infection, using spray inoculations) and Type II (resistance to spread within the spike, using single floret inoculations) resistances in the field (spray) and greenhouse (spray and single floret). Following field inoculations, disease index, percent Fusarium damaged kernels (FDK), and DON measurements of CE plants were similar to or greater than CB037. For greenhouse inoculations, the area under the disease progress curve (AUDPC) and FDK were determined. Following screens, focus was placed on two each, SbC3'H and SbCCoAOMT CE lines because of trends towards decreased AUDPC and FDK observed following single floret inoculations. These four lines were as susceptible as CB037 following spray inoculations. However, single floret inoculations showed that these CE lines had significantly reduced AUDPC (P<0.01) and FDK (P≤0.02) compared with CB037, indicating improved Type II resistance. None of these CE lines had increased acid detergent lignin, as compared with CB037, indicating that lignin concentration may not be a major factor in FHB resistance. The SbC3'H and SbCCoAOMT CE lines are valuable for investigating phenylpropanoid-based resistance to FHB.

2.
Plant Dis ; 103(5): 972-983, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30840842

RESUMO

Hexaploid waxy wheat (Triticum aestivum L.) has null mutations in Wx genes and grain lacking amylose with increased digestibility and usability for specialty foods. The waxy cultivar Mattern is susceptible to Fusarium head blight (FHB) caused by Fusarium graminearum species complex, which produces the mycotoxin deoxynivalenol (DON). In experiment 1, conducted during low natural FHB, grain from waxy breeding lines, Mattern, and wild-type breeding lines and cultivars were assessed for Fusarium infection and DON concentration. Nine Fusarium species and species complexes were detected from internally infected (disinfested) grain; F. graminearum infections were not different between waxy and wild-type. Surface- and internally infected grain (nondisinfested) had greater numbers of Fusarium isolates across waxy versus wild-type, but F. graminearum-like infections were similar; however, DON levels were higher in waxy. In experiment 2, conducted during a timely epidemic, disease severity, Fusarium-damaged kernels (FDK), and DON were assessed for waxy breeding lines, Mattern, and wild-type cultivars. Disease severity and FDK were not significantly different from wild-type, but DON was higher in waxy than wild-type lines. Across both experiments, waxy breeding lines, Plant Introductions 677876 and 677877, responded similarly to FHB as moderately resistant wild-type cultivar Overland, showing promise for breeding advanced waxy cultivars with reduced FHB susceptibility.


Assuntos
Fusarium , Triticum , Amilose , Resistência à Doença/fisiologia , Fusarium/enzimologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa