Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 583(7818): 852-857, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699416

RESUMO

Complex organisms can rapidly induce select genes in response to diverse environmental cues. This regulation occurs in the context of large genomes condensed by histone proteins into chromatin. The sensing of pathogens by macrophages engages conserved signalling pathways and transcription factors to coordinate the induction of inflammatory genes1-3. Enriched integration of histone H3.3, the ancestral histone H3 variant, is a general feature of dynamically regulated chromatin and transcription4-7. However, how chromatin is regulated at induced genes, and what features of H3.3 might enable rapid and high-level transcription, are unknown. The amino terminus of H3.3 contains a unique serine residue (Ser31) that is absent in 'canonical' H3.1 and H3.2. Here we show that this residue, H3.3S31, is phosphorylated (H3.3S31ph) in a stimulation-dependent manner along rapidly induced genes in mouse macrophages. This selective mark of stimulation-responsive genes directly engages the histone methyltransferase SETD2, a component of the active transcription machinery, and 'ejects' the elongation corepressor ZMYND118,9. We propose that features of H3.3 at stimulation-induced genes, including H3.3S31ph, provide preferential access to the transcription apparatus. Our results indicate dedicated mechanisms that enable rapid transcription involving the histone variant H3.3, its phosphorylation, and both the recruitment and the ejection of chromatin regulators.


Assuntos
Histonas/química , Histonas/metabolismo , Transcrição Gênica , Regulação para Cima/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Quinase I-kappa B/química , Quinase I-kappa B/metabolismo , Macrófagos/metabolismo , Masculino , Metilação , Camundongos , Modelos Moleculares , Fosforilação
2.
Cancer Cell ; 42(4): 583-604.e11, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458187

RESUMO

ARID1A, a subunit of the canonical BAF nucleosome remodeling complex, is commonly mutated in lymphomas. We show that ARID1A orchestrates B cell fate during the germinal center (GC) response, facilitating cooperative and sequential binding of PU.1 and NF-kB at crucial genes for cytokine and CD40 signaling. The absence of ARID1A tilts GC cell fate toward immature IgM+CD80-PD-L2- memory B cells, known for their potential to re-enter new GCs. When combined with BCL2 oncogene, ARID1A haploinsufficiency hastens the progression of aggressive follicular lymphomas (FLs) in mice. Patients with FL with ARID1A-inactivating mutations preferentially display an immature memory B cell-like state with increased transformation risk to aggressive disease. These observations offer mechanistic understanding into the emergence of both indolent and aggressive ARID1A-mutant lymphomas through the formation of immature memory-like clonal precursors. Lastly, we demonstrate that ARID1A mutation induces synthetic lethality to SMARCA2/4 inhibition, paving the way for potential precision therapy for high-risk patients.


Assuntos
Linfoma , Células B de Memória , Animais , Humanos , Camundongos , Proteínas de Ligação a DNA/genética , Linfoma/genética , Mutação , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cancer Discov ; 12(7): 1782-1803, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35443279

RESUMO

SETD2 is the sole histone methyltransferase responsible for H3K36me3, with roles in splicing, transcription initiation, and DNA damage response. Homozygous disruption of SETD2 yields a tumor suppressor effect in various cancers. However, SETD2 mutation is typically heterozygous in diffuse large B-cell lymphomas. Here we show that heterozygous Setd2 deficiency results in germinal center (GC) hyperplasia and increased competitive fitness, with reduced DNA damage checkpoint activity and apoptosis, resulting in accelerated lymphomagenesis. Impaired DNA damage sensing in Setd2-haploinsufficient germinal center B (GCB) and lymphoma cells associated with increased AICDA-induced somatic hypermutation, complex structural variants, and increased translocations including those activating MYC. DNA damage was selectively increased on the nontemplate strand, and H3K36me3 loss was associated with greater RNAPII processivity and mutational burden, suggesting that SETD2-mediated H3K36me3 is required for proper sensing of cytosine deamination. Hence, Setd2 haploinsufficiency delineates a novel GCB context-specific oncogenic pathway involving defective epigenetic surveillance of AICDA-mediated effects on transcribed genes. SIGNIFICANCE: Our findings define a B cell-specific oncogenic effect of SETD2 heterozygous mutation, which unleashes AICDA mutagenesis of nontemplate strand DNA in the GC reaction, resulting in lymphomas with heavy mutational burden. GC-derived lymphomas did not tolerate SETD2 homozygous deletion, pointing to a novel context-specific therapeutic vulnerability. This article is highlighted in the In This Issue feature, p. 1599.


Assuntos
Linfócitos B , Citidina Desaminase , Centro Germinativo , Haploinsuficiência , Histona-Lisina N-Metiltransferase , Hipermutação Somática de Imunoglobulina , Citidina Desaminase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Homozigoto , Humanos , Deleção de Sequência
4.
Front Immunol ; 12: 688493, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621263

RESUMO

The cohesin complex plays critical roles in genomic stability and gene expression through effects on 3D architecture. Cohesin core subunit genes are mutated across a wide cross-section of cancers, but not in germinal center (GC) derived lymphomas. In spite of this, haploinsufficiency of cohesin ATPase subunit Smc3 was shown to contribute to malignant transformation of GC B-cells in mice. Herein we explored potential mechanisms and clinical relevance of Smc3 deficiency in GC lymphomagenesis. Transcriptional profiling of Smc3 haploinsufficient murine lymphomas revealed downregulation of genes repressed by loss of epigenetic tumor suppressors Tet2 and Kmt2d. Profiling 3D chromosomal interactions in lymphomas revealed impaired enhancer-promoter interactions affecting genes like Tet2, which was aberrantly downregulated in Smc3 deficient lymphomas. Tet2 plays important roles in B-cell exit from the GC reaction, and single cell RNA-seq profiles and phenotypic trajectory analysis in Smc3 mutant mice revealed a specific defect in commitment to the final steps of plasma cell differentiation. Although Smc3 deficiency resulted in structural abnormalities in GC B-cells, there was no increase of somatic mutations or structural variants in Smc3 haploinsufficient lymphomas, suggesting that cohesin deficiency largely induces lymphomas through disruption of enhancer-promoter interactions of terminal differentiation and tumor suppressor genes. Strikingly, the presence of the Smc3 haploinsufficient GC B-cell transcriptional signature in human patients with GC-derived diffuse large B-cell lymphoma (DLBCL) was linked to inferior clinical outcome and low expression of cohesin core subunits. Reciprocally, reduced expression of cohesin subunits was an independent risk factor for worse survival int DLBCL patient cohorts. Collectively, the data suggest that Smc3 functions as a bona fide tumor suppressor for lymphomas through non-genetic mechanisms, and drives disease by disrupting the commitment of GC B-cells to the plasma cell fate.


Assuntos
Linfócitos B/imunologia , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas Cromossômicas não Histona/genética , Dosagem de Genes , Centro Germinativo/imunologia , Haploinsuficiência , Linfoma Difuso de Grandes Células B/genética , Plasmócitos/imunologia , Animais , Linfócitos B/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/imunologia , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/imunologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas Cromossômicas não Histona/imunologia , Proteínas Cromossômicas não Histona/metabolismo , Técnicas de Cocultura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Bases de Dados Genéticas , Dioxigenases/genética , Dioxigenases/metabolismo , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Centro Germinativo/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Fenótipo , Plasmócitos/metabolismo , Transcrição Gênica
5.
ACS Appl Bio Mater ; 4(7): 5435-5448, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35006725

RESUMO

A practical, modular synthesis of targeted molecular imaging agents (TMIAs) containing near-infrared dyes for optical molecular imaging (OMI) or chelated metals for magnetic resonance imaging (MRI) and single-photon emission correlation tomography (SPECT) or positron emission tomography (PET) has been developed. In the method, imaging modules are formed early in the synthesis by attaching imaging agents to the side chain of protected lysines. These modules may be assembled to provide a given set of single- or dual-modal imaging agents, which may be conjugated in the last steps of the synthesis under mild conditions to linkers and targeting groups. A key discovery was the ability of a metal such as gadolinium, useful in MRI, to serve as a protecting group for the chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). It was further discovered that two lanthanide metals, La and Ce, can double as protecting groups and placeholder metals, which may be transmetalated under mild conditions by metals used for PET in the final step. The modular method enabled the synthesis of discrete targeted probes with two of the same or different dyes, two same or different metals, or mixtures of dyes and metals. The approach was exemplified by the synthesis of single- or dual-modal imaging modules for MRI-OMI, PET-OMI, and PET-MRI, followed by conjugation to the integrin-seeking peptide, c(RGDyK). For Gd modules, their efficacy for MRI was verified by measuring the NMR spin-lattice relaxivity. To validate functional imaging of TMIAs, dual-modal agents containing Cy5.5 were shown to target A549 cancer cells by confocal fluorescence microscopy.


Assuntos
Gadolínio , Tomografia Computadorizada por Raios X , Corantes Fluorescentes/química , Gadolínio/química , Metais/química , Imagem Molecular , Peptídeos
6.
Cancer Discov ; 11(6): 1542-1561, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33500244

RESUMO

Patients with acute myeloid leukemia (AML) frequently relapse after chemotherapy, yet the mechanism by which AML reemerges is not fully understood. Herein, we show that primary AML cells enter a senescence-like phenotype following chemotherapy in vitro and in vivo. This is accompanied by induction of senescence/inflammatory and embryonic diapause transcriptional programs, with downregulation of MYC and leukemia stem cell genes. Single-cell RNA sequencing suggested depletion of leukemia stem cells in vitro and in vivo, and enrichment for subpopulations with distinct senescence-like cells. This senescence effect was transient and conferred superior colony-forming and engraftment potential. Entry into this senescence-like phenotype was dependent on ATR, and persistence of AML cells was severely impaired by ATR inhibitors. Altogether, we propose that AML relapse is facilitated by a senescence-like resilience phenotype that occurs regardless of their stem cell status. Upon recovery, these post-senescence AML cells give rise to relapsed AMLs with increased stem cell potential. SIGNIFICANCE: Despite entering complete remission after chemotherapy, relapse occurs in many patients with AML. Thus, there is an urgent need to understand the relapse mechanism in AML and the development of targeted treatments to improve outcome. Here, we identified a senescence-like resilience phenotype through which AML cells can survive and repopulate leukemia.This article is highlighted in the In This Issue feature, p. 1307.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Células-Tronco Neoplásicas/citologia , Indução de Remissão , Animais , Linhagem Celular Tumoral/citologia , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Recidiva Local de Neoplasia/patologia , Fenótipo
7.
Cell Rep ; 33(10): 108448, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33242410

RESUMO

We have identified and validated a spaceflight-associated microRNA (miRNA) signature that is shared by rodents and humans in response to simulated, short-duration and long-duration spaceflight. Previous studies have identified miRNAs that regulate rodent responses to spaceflight in low-Earth orbit, and we have confirmed the expression of these proposed spaceflight-associated miRNAs in rodents reacting to simulated spaceflight conditions. Moreover, astronaut samples from the NASA Twins Study confirmed these expression signatures in miRNA sequencing, single-cell RNA sequencing (scRNA-seq), and single-cell assay for transposase accessible chromatin (scATAC-seq) data. Additionally, a subset of these miRNAs (miR-125, miR-16, and let-7a) was found to regulate vascular damage caused by simulated deep space radiation. To demonstrate the physiological relevance of key spaceflight-associated miRNAs, we utilized antagomirs to inhibit their expression and successfully rescue simulated deep-space-radiation-mediated damage in human 3D vascular constructs.


Assuntos
MicroRNA Circulante/genética , MicroRNAs/genética , Ausência de Peso/efeitos adversos , Animais , Feminino , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Ratos , Análise de Sequência de RNA/métodos , Voo Espacial , Transcriptoma/genética , Simulação de Ausência de Peso/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa