RESUMO
Gq proteins are universally important for signal transduction in mammalian cells. The underlying kinetics and transformation from extracellular stimuli into intracellular signaling, however could not be investigated in detail so far. Here we present the human Neuropsin (hOPN5) for specific and repetitive manipulation of Gq signaling in vitro and in vivo with high spatio-temporal resolution. Properties and G protein specificity of hOPN5 are characterized by UV light induced IP3 generation, Ca2+ transients and inhibition of GIRK channel activity in HEK cells. In adult hearts from a transgenic animal model, light increases the spontaneous beating rate. In addition, we demonstrate light induced contractions in the small intestine, which are not detectable after pharmacological Gq protein block. All-optical high-throughput screening for TRPC6 inhibitors is more specific and sensitive than conventional pharmacological screening. Thus, we demonstrate specific Gq signaling of hOPN5 and unveil its potential for optogenetic applications.
Assuntos
Optogenética , Transdução de Sinais , Animais , Humanos , Luz , Mamíferos , Transdução de Sinais/fisiologia , Canal de Cátion TRPC6RESUMO
The standard technique for investigating adrenergic effects on heart function is perfusion with pharmaceutical agonists, which does not provide high temporal or spatial precision. Herein we demonstrate that the light sensitive Gs-protein coupled receptor JellyOp enables optogenetic stimulation of Gs-signaling in cardiomyocytes and the whole heart. Illumination of transgenic embryonic stem cell-derived cardiomyocytes or of the right atrium of mice expressing JellyOp elevates cAMP levels and instantaneously accelerates spontaneous beating rates similar to pharmacological ß-adrenergic stimulation. Light application to the dorsal left atrium instead leads to supraventricular extrabeats, indicating adverse effects of localized Gs-signaling. In isolated ventricular cardiomyocytes from JellyOp mice, we find increased Ca2+ currents, fractional cell shortening and relaxation rates after illumination enabling the analysis of differential Gs-signaling with high temporal precision. Thus, JellyOp expression allows localized and time-restricted Gs stimulation and will provide mechanistic insights into different effects of site-specific, long-lasting and pulsatile Gs activation.