Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 17(11): 4386-4400, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33079558

RESUMO

The mechanism of cell death has attracted a great deal of research interest in the design of antitumor therapy in recent days. Several attempts have been carried out in this direction and in our study also, we studied this phenomenon with the design of panitumumab (PmAb)-conjugated and temozolomide (TMZ)-loaded poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs), termed PmAb-TMZ-PLGA-NPs. First, PmAb was functionalized on the surface of TMZ-PLGA-NPs using ethyl(dimethylaminopropyl)carbodiimide (EDC)-N-hydroxysuccinimide (NHS) chemistry. Targeted PLGA-NPs significantly enhanced the cellular uptake of nanoparticles in the U-87 MG cell line as a result of the high epidermal growth factor receptor (EGFR) expression, compared to the LN229 cell line. Our study demonstrated that following the treatment of PmAb-TMZ-PLGA-NPs, a more pronounced anticancer effect was noticed in comparison with free TMZ and TMZ-PLGA-NPs. Further, a more pronounced cytotoxic effect of PmAb-TMZ-PLGA-NPs was observed in the high EGFR-overexpressed glioblastoma multiforme (GBM) model (U-87 MG) cell line compared to the low EGFR GBM model (LN229). Our study demonstrated that the treatment of PmAb-TMZ-PLGA-NPs in GBM tried to adopt the autophagic pathway of the cell survival mechanism with the elevated level of autophagic marker (Beclin-1 and LC3B) at 24 h time point, thereby suppressing the expression of caspase-9 and PARP. However, at the 48 h time point, the elevated expression of caspase-9 and PARP with the downregulation of Beclin-1 and LC3B, following the treatment of PmAb-TMZ-PLGA-NPs in the GBM model, suggested that apoptotic cell death was superior over autophagic cell survival. It was also noteworthy the activation of caspase-9 was correlated with the continuous overproduction of reactive oxygen species up to a 48 h time point after the treatment of PmAb-TMZ-PLGA-NPs. This result sheds light on the biological effect of targeted chemotherapy and illustrates that PmAb-TMZ-PLGA-NPs could be applied for EGFR-overexpressed different cancer models.


Assuntos
Antineoplásicos/administração & dosagem , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Caspase 9/metabolismo , Portadores de Fármacos/química , Glioblastoma/metabolismo , Nanopartículas/química , Panitumumabe/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Transdução de Sinais/efeitos dos fármacos , Temozolomida/administração & dosagem , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Glioblastoma/patologia , Humanos , Espécies Reativas de Oxigênio/metabolismo
2.
J Control Release ; 372: 587-608, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38942083

RESUMO

Tumor-associated macrophages (TAMs) constitute 50-80% of stromal cells in most solid tumors with high mortality and poor prognosis. Tumor-infiltrating dendritic cells (TIDCs) and TAMs are key components mediating immune responses within the tumor microenvironment (TME). Considering their refractory properties, simultaneous remodeling of TAMs and TIDCs is a potential strategy of boosting tumor immunity and restoring immunosurveillance. In this study, mannose-decorated poly(lactic-co-glycolic acid) nanoparticles loading with R848 (Man-pD-PLGA-NP@R848) were prepared to dually target TAMs and TIDCs for efficient tumor immunotherapy. The three-dimensional (3D) cell culture model can simulate tumor growth as influenced by the TME and its 3D structural arrangement. Consequently, cancer spheroids enriched with tumor-associated macrophages (TAMs) were fabricated to assess the therapeutic effectiveness of Man-pD-PLGA-NP@R848. In the TME, Man-pD-PLGA-NP@R848 targeted both TAMs and TIDCs in a mannose receptor-mediated manner. Subsequently, Man-pD-PLGA-NP@R848 released R848 to activate Toll-like receptors 7 and 8, following dual-reprograming of TIDCs and TAMs. Man-pD-PLGA-NP@R848 could uniquely reprogram TAMs into antitumoral phenotypes, decrease angiogenesis, reprogram the immunosuppressive TME from "cold tumor" into "hot tumor", with high CD4+ and CD8+ T cell infiltration, and consequently hinder tumor development in B16F10 tumor-bearing mice. Therefore, dual-reprograming of TIDCs and TAMs with the Man-pD-PLGA-NP@R848 is a promising cancer immunotherapy strategy.

3.
Biomed Pharmacother ; 165: 115023, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37329708

RESUMO

Dual-receptor targeted (DRT) nanoparticles which contain two distinct targeting agents may exhibit higher cell selectivity, cellular uptake, and cytotoxicity toward cancer cells than single-ligand targeted nanoparticle systems without additional functionality. The purpose of this study is to prepare DRT poly(lactic-co-glycolic acid) (PLGA) nanoparticles for targeting the delivery of docetaxel (DTX) to the EGFR and PD-L1 receptor positive cancer cells such as human glioblastoma multiform (U87-MG) and human non-small cell lung cancer (A549) cell lines. Anti-EGFR and anti-PD-L1 antibody were decorated on DTX loaded PLGA nanoparticles to prepare DRT-DTX-PLGA via. single emulsion solvent evaporation method. Physicochemical characterizations of DRT-DTX-PLGA, such as particle size, zeta-potential, morphology, and in vitro DTX release were also evaluated. The average particle size of DRT-DTX-PLGA was 124.2 ± 1.1 nm with spherical and smooth morphology. In the cellular uptake study, the DRT-DTX-PLGA endocytosed by the U87-MG and A549 cells was single ligand targeting nanoparticle. From the in vitro cell cytotoxicity, and apoptosis studies, we reported that DRT-DTX-PLGA exhibited high cytotoxicity and enhanced the apoptotic cell compared to the single ligand-targeted nanoparticle. The dual receptor mediated endocytosis of DRT-DTX-PLGA showed a high binding affinity effect that leads to high intracellular DTX concentration and exhibited high cytotoxic properties. Thus, DRT nanoparticles have the potential to improve cancer therapy by providing selectivity over single-ligand-targeted nanoparticles.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Humanos , Docetaxel/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ligantes , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Portadores de Fármacos/química , Linhagem Celular Tumoral
4.
Bioeng Transl Med ; 8(5): e10379, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693071

RESUMO

The development of an optimal treatment modality to improve the therapeutic outcome of breast cancer patients is still difficult. Poor antigen presentation to T cells is a major challenge in cancer immunotherapy. In this study, a synergistic immunotherapy strategy for breast cancer incorporating immune cell infiltration, immunogenic cell death (ICD), and dendritic cell (DC) maturation through a reactive oxygen species (ROS)-responsive dual-targeted smart nanosystem (anti-PD-L1-TKNP) for the simultaneous release of DOX, R848, and MIP-3α in the tumor microenvironment is reported. Following local injection, anti-PD-L1-DOX-R848-MIP-3α/thioketal nanoparticle (TKNP) converts tumor cells to a vaccine owing to the combinatorial effect of DOX-induced ICD, R848-mediated immunostimulatory properties, and MIP-3α-induced immune cell recruitment in the tumor microenvironment. Intratumoral injection of anti-PD-L1-DOX-R848-MIP-3α/TKNP caused significant regression of breast cancer. Mechanistic studies reveal that anti-PD-L1-DOX-R848-MIP-3α/TKNP specifically targets tumor tissue, resulting in maximum exposure of calreticulin (CRT) and HMGB1 in tumors, and significantly enhances intratumoral infiltration of CD4+ and CD8+ T cells in tumors. Therefore, a combined strategy using dual-targeted ROS-responsive TKNP highlights the significant application of nanoparticles in modulating the tumor microenvironment and could be a clinical treatment strategy for effective breast cancer management.

5.
J Control Release ; 346: 1-19, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398173

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative condition characterized by the loss of dopaminergic neurons within the substantia nigra. The specific molecular mechanisms through which PD-associated neuronal loss occurs remain unclear, and there is no available effective treatment against PD-related neurodegeneration. Resveratrol (RSV) has exhibited promising neuroprotective effects via antioxidant and anti-inflammatory activity. However, its poor bioavailability in the brain represents a challenge for its application in PD treatment. In this study, we synthesized RSV-loaded PLGA nanoparticles (RSV-PLGA-NPs) conjugated with lactoferrin (Lf) to enhance RSV diffusion into the brain and assessed whether this formulation improved the neuroprotective effects of RSV in experimental PD models. The Lf-conjugated RSV-PLGA-NPs (Lf-RSV-PLGA-NPs) exhibited enhanced internalization into SH-SY5Y and human brain microvascular endothelial cells as compared to RSV-PLGA-NPs and free RSV. Further, Lf-RSV-PLGA-NPs were more effective than RSV-PLGA-NPs and free RSV in attenuating the MPP+-induced generation of reactive oxygen species, reduction of mitochondrial membrane potential, and cell death. Importantly, Lf conjugation specifically increased the accumulation of RSV-PLGA-NPs in the brain as determined via bioluminescent imaging analyses. Our formulation substantially enhanced the neuroprotective effects of RSV in the MPTP-induced PD model. Hence, Lf-RSV-PLGA-NPs represent a promising tool for improving RSV bioavailability and neuroprotection within the brain.


Assuntos
Nanopartículas , Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Barreira Hematoencefálica , Células Endoteliais , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Resveratrol
6.
Biomaterials ; 291: 121911, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36399833

RESUMO

Bispecific nanoparticles (NPs) are conjugated with two antibodies that enhance T cell cytotoxicity by sequentially targeting CD3 and tumor-specific proteins. This interaction redirects T cells to specific tumor antigens and activates them to lyse tumor cells by blocking two different signaling pathways simultaneously. This study developed NP-based bispecific T-cell engagers (nanoBiTEs), which are R848-loaded bispecific poly(lactic-co-glycolic acid) NPs decorated with anti-CD3 antibody targeting T cells and anti-PD-L1 antibody targeting PD-L1 ligands (bis-R848-PLGA-NPs). Bis-R848-PLGA-NPs enhance the immunogenic response in destroying cancer cells by restoring the T cell effector functions. These interactions allow T cells to come in close proximity to the tumor cells. Finally, the release of R848 from PLGA-NPs activates dendritic cells, enhancing T cell activation. In vitro results show maximum internalization of bis-R848-PLGA-NPs in SK-OV3 and B16F10 cell lines, attributed to high PD-L1 expression in both cells. Furthermore, bis-R848-PLGA-NPs-treated CD8+ T cells exhibit a significantly increased total amount of CD8+/CD25+, CD8+/CD69+, and cytokine expression that leads to the robust inhibition of PD-L1 expressed cancer cells. Additionally, tumor growth is significantly inhibited by bis-R848-PLGA-NPs in the B16F10 xenograft mouse model and significantly enhanced intratumoral infiltration of CD4+ and CD8+ T cells, as well as tumor-infiltrated cytokines.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Camundongos , Animais , Glicóis , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Linfócitos T CD8-Positivos , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa