Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Perception ; 48(2): 115-137, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30799731

RESUMO

We investigated artificial scotomas created when a moving object instantaneously crossed a gap, jumping ahead and continuing its otherwise smooth motion. Gaps of up to 5.1 degrees of visual angle, presented at 18° eccentricity, either closed completely or appeared much shorter than when the same gap was crossed by two-point apparent motion, or crossed more slowly, mimicking occlusion. Prolonged exposure to motion trajectories with a gap in most cases led to further shrinking of the gap. The same gap-shrinking effect has previously been observed in touch. In both sensory modalities, it implicates facilitation among codirectional local motion detectors and motion neurons with receptive fields larger than the gap. Unlike stimuli that simply deprive a receptor surface of input, suggesting it is insentient, our motion pattern skips a section in a manner that suggests a portion of the receptor surface has been excised, and the remaining portions stitched back together. This makes it a potentially useful tool in the experimental study of plasticity in sensory maps.


Assuntos
Percepção de Movimento/fisiologia , Escotoma/fisiopatologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
2.
Proc Natl Acad Sci U S A ; 112(48): 14990-5, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627250

RESUMO

Studies of perception usually emphasize processes that are largely universal across observers and--except for short-term fluctuations--stationary over time. Here we test the universality and stationarity assumptions with two families of ambiguous visual stimuli. Each stimulus can be perceived in two different ways, parameterized by two opposite directions from a continuous circular variable. A large-sample study showed that almost all observers have preferred directions or biases, with directions lying within 90 degrees of the bias direction nearly always perceived and opposite directions almost never perceived. The biases differ dramatically from one observer to the next, and although nearly every bias direction occurs in the population, the population distributions of the biases are nonuniform, featuring asymmetric peaks in the cardinal directions. The biases for the two families of stimuli are independent and have distinct population distributions. Following external perturbations and spontaneous fluctuations, the biases decay over tens of seconds toward their initial values. Persistent changes in the biases are found on time scales of several minutes to 1 hour. On scales of days to months, the biases undergo a variety of dynamical processes such as drifts, jumps, and oscillations. The global statistics of a majority of these long-term time series are well modeled as random walk processes. The measurable fluctuations of these hitherto unknown degrees of freedom show that the assumptions of universality and stationarity in perception may be unwarranted and that models of perception must include both directly observable variables as well as covert, persistent states.


Assuntos
Modelos Neurológicos , Percepção Visual/fisiologia , Feminino , Humanos , Masculino
3.
J Vis ; 16(10): 1, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27479918

RESUMO

Static visual stimuli are smeared across the retina during saccades, but in normal conditions this smear is not perceived. Instead, we perceive the visual scene as static and sharp. However, retinal smear is perceived if stimuli are shown only intrasaccadically, but not if the stimulus is additionally shown before a saccade begins, or after the saccade ends (Campbell & Wurtz, 1978). This inhibition has been compared to forward and backward metacontrast masking, but with spatial relations between stimulus and mask that are different from ordinary metacontrast during fixation. Previous studies of smear masking have used subjective measures of smear perception. Here we develop a new, objective technique for measuring smear masking, based on the spatial localization of a gap in the smear created by very quickly blanking the stimulus at various points during the saccade. We apply this technique to show that smear masking survives dichoptic presentation (suggesting that it is therefore cortical in origin), as well as separations of as much as 6° between smear and mask.


Assuntos
Mascaramento Perceptivo/fisiologia , Retina/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Visual/fisiologia , Humanos
4.
J Exp Psychol Hum Percept Perform ; 47(1): 1-12, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33211531

RESUMO

Eye blinks strongly attenuate visual input, yet we perceive the world as continuous. How this visual continuity is achieved remains a fundamental and unsolved problem. A decrease in luminance sensitivity has been proposed as a mechanism but is insufficient to mask the even larger decrease in luminance because of blinks. Here we put forward a different hypothesis: visual continuity can be achieved through shortening of perceived durations of the sensory consequences of blinks. Here we probed the perceived durations of the blackouts caused by blinks and visual stimuli interrupted by blinks. We found that the perceived durations of blackouts because of blinks are about half as long as artificial blackouts immediately preceding or following the blink. Stimuli interrupted by blinks were perceived as briefer than uninterrupted stimuli, by about the same duration as the interruption-but so were stimuli interrupted by optically simulated blinks. There was a difference between real and simulated blinks, however: The decrease in perceived duration depended on the duration of the interruption for simulated, but not for real, blinks. These profound modifications in time perception during blinks show a way in which temporal processing contributes to the solution of an essential perceptual problem. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Assuntos
Percepção do Tempo , Piscadela , Humanos , Percepção Visual
5.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33483324

RESUMO

What role does color play in the neural representation of complex shapes? We approached the question by measuring color responses of face-selective neurons, using fMRI-guided microelectrode recording of the middle and anterior face patches of inferior temporal cortex (IT) in rhesus macaques. Face-selective cells responded weakly to pure color (equiluminant) photographs of faces. But many of the cells nonetheless showed a bias for warm colors when assessed using images that preserved the luminance contrast relationships of the original photographs. This bias was also found for non-face-selective neurons. Fourier analysis uncovered two components: the first harmonic, accounting for most of the tuning, was biased toward reddish colors, corresponding to the L>M pole of the L-M cardinal axis. The second harmonic showed a bias for modulation between blue and yellow colors axis, corresponding to the S-cone axis. To test what role face-selective cells play in behavior, we related the information content of the neural population with the distribution of face colors. The analyses show that face-selective cells are not optimally tuned to discriminate face colors, but are consistent with the idea that face-selective cells contribute selectively to processing the green-red contrast of faces. The research supports the hypothesis that color-specific information related to the discrimination of objects, including faces, is handled by neural circuits that are independent of shape-selective cortex, as captured by the multistage parallel processing framework of IT (Lafer-Sousa and Conway, 2013).


Assuntos
Mapeamento Encefálico , Reconhecimento Visual de Modelos , Animais , Percepção de Cores , Macaca mulatta , Estimulação Luminosa , Lobo Temporal
6.
J Exp Psychol Hum Percept Perform ; 45(9): 1236-1247, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31219284

RESUMO

At the scale in which we live, space is continuous. Nevertheless, our perception and cognition parse the world into categories, whether physical, like scene or object, or abstract, like infinitesimal point or 7. The present study focuses on 2 categories of special angles in planar geometry, parallels and perpendiculars, and we evaluate how these categories might be reflected in adults' basic angle discrimination. In the first experiment, participants were most precise when detecting 2 parallel or perpendicular lines among other pairs of lines at different relative orientations. Detection was also enhanced for 2 connected lines whose angle approached 90°, with precision peaking at 90°. These patterns emerged despite large variations in the scales and orientations of the angle exemplars. In the second experiment, the enhanced detection of perpendiculars persisted when stimuli were rotated in depth, indicating a capacity to discriminate shapes based on perpendicularity in 3 dimensions despite large variation in angles' 2-dimensional projections. The results suggest that 2 categorical concepts which lie at the foundation of Euclidean geometry, parallelism and perpendicularity, are reflected in our discrimination of simple visual forms, and they pave the way for future studies exploring the developmental and evolutionary origins of these cognitive categories. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Assuntos
Formação de Conceito/fisiologia , Discriminação Psicológica/fisiologia , Conceitos Matemáticos , Reconhecimento Visual de Modelos/fisiologia , Percepção Espacial/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
7.
Iperception ; 9(3): 2041669518773111, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780569

RESUMO

Saccades are crucial to visual information intake by re-orienting the fovea to regions of interest in the visual scene. However, they cause drastic disruptions of the retinal input by shifting the retinal image at very high speeds. The resulting motion and smear are barely noticed, a phenomenon known as saccadic omission. Here, we studied the perception of motion during simulated saccades while observers fixated, moving naturalistic visual scenes across the retina with saccadic speed profiles using a very high temporal frequency display. We found that the mere presence of static pre- and post-saccadic images significantly reduces the perceived amplitude of motion but does not eliminate it entirely. This masking of motion perception could make the intra-saccadic stimulus much less salient and thus easier to ignore.

8.
Curr Biol ; 27(3): 445-450, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28111150

RESUMO

Eye blinks cause disruptions to visual input and are accompanied by rotations of the eyeball [1]. Like every motor action, these eye movements are subject to noise and introduce instabilities in gaze direction across blinks [2]. Accumulating errors across repeated blinks would be debilitating for visual performance. Here, we show that the oculomotor system constantly recalibrates gaze direction during blinks to counteract gaze instability. Observers were instructed to fixate a visual target while gaze direction was recorded and blinks were detected in real time. With every spontaneous blink-while eyelids were closed-the target was displaced laterally by 0.5° (or 1.0°). Most observers reported being unaware of displacements during blinks. After adapting for ∼35 blinks, gaze positions after blinks showed significant biases toward the new target position. Automatic eye movements accompanied each blink, and an aftereffect persisted for a few blinks after target displacements were eliminated. No adaptive gaze shift occurred when blinks were simulated with shutter glasses at random time points or actively triggered by observers, or when target displacements were masked by a distracting stimulus. Visual signals during blinks are suppressed by inhibitory mechanisms [3-6], so that small changes across blinks are generally not noticed [7, 8]. Additionally, target displacements during blinks can trigger automatic gaze recalibration, similar to the well-known saccadic adaptation effect [9-11]. This novel mechanism might be specific to the maintenance of gaze direction across blinks or might depend on a more general oculomotor recalibration mechanism adapting gaze position during intrinsically generated disruptions to visual input.


Assuntos
Atenção/fisiologia , Piscadela , Movimentos Oculares , Fixação Ocular , Movimentos Sacádicos , Adaptação Fisiológica , Humanos , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa