Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Immunol ; 211(12): 1792-1805, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37877672

RESUMO

In an effort to improve HLA-"humanized" mouse models for type 1 diabetes (T1D) therapy development, we previously generated directly in the NOD strain CRISPR/Cas9-mediated deletions of various combinations of murine MHC genes. These new models improved upon previously available platforms by retaining ß2-microglobulin functionality in FcRn and nonclassical MHC class I formation. As proof of concept, we generated H2-Db/H2-Kd double knockout NOD mice expressing human HLA-A*0201 or HLA-B*3906 class I variants that both supported autoreactive diabetogenic CD8+ T cell responses. In this follow-up work, we now describe the creation of 10 new NOD-based mouse models expressing various combinations of HLA genes with and without chimeric transgenic human TCRs reactive to proinsulin/insulin. The new TCR-transgenic models develop differing levels of insulitis mediated by HLA-DQ8-restricted insulin-reactive T cells. Additionally, these transgenic T cells can transfer insulitis to newly developed NSG mice lacking classical murine MHC molecules, but expressing HLA-DQ8. These new models can be used to test potential therapeutics for a possible capacity to reduce islet infiltration or change the phenotype of T cells expressing type 1 diabetes patient-derived ß cell autoantigen-specific TCRs.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Antígenos HLA-DQ , Humanos , Camundongos , Animais , Camundongos Endogâmicos NOD , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/terapia , Insulina , Camundongos Transgênicos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/genética
2.
PLoS Genet ; 18(6): e1010271, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727842

RESUMO

The TGF-ß-regulated Chloride Intracellular Channel 4 (CLIC4) is an essential participant in the formation of breast cancer stroma. Here, we used data available from the TCGA and METABRIC datasets to show that CLIC4 expression was higher in breast cancers from younger women and those with early-stage metastatic disease. Elevated CLIC4 predicted poor outcome in breast cancer patients and was linked to the TGF-ß pathway. However, these associations did not reveal the underlying biological contribution of CLIC4 to breast cancer progression. Constitutive ablation of host Clic4 in two murine metastatic breast cancer models nearly eliminated lung metastases without reducing primary tumor weight, while tumor cells ablated of Clic4 retained metastatic capability in wildtype hosts. Thus, CLIC4 was required for host metastatic competence. Pre- and post-metastatic proteomic analysis identified circulating pro-metastatic soluble factors that differed in tumor-bearing CLIC4-deficient and wildtype hosts. Vascular abnormalities and necrosis increased in primary tumors from CLIC4-deficient hosts. Transcriptional profiles of both primary tumors and pre-metastatic lungs of tumor-bearing CLIC4-deficient hosts were consistent with a microenvironment where inflammatory pathways were elevated. Altogether, CLIC4 expression in human breast cancers may serve as a prognostic biomarker; therapeutic targeting of CLIC4 could reduce primary tumor viability and host metastatic competence.


Assuntos
Neoplasias da Mama , Canais de Cloreto , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Canais de Cloreto/biossíntese , Canais de Cloreto/genética , Feminino , Humanos , Camundongos , Metástase Neoplásica , Proteômica , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral
3.
J Immunol ; 209(2): 227-237, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35760520

RESUMO

Type 1 diabetes (T1D) in both humans and NOD mice is caused by T cell-mediated autoimmune destruction of pancreatic ß cells. Increased frequency or activity of autoreactive T cells and failures of regulatory T cells (Tregs) to control these pathogenic effectors have both been implicated in T1D etiology. Due to the expression of MHC class I molecules on ß cells, CD8 T cells represent the ultimate effector population mediating T1D. Developing autoreactive CD8 T cells normally undergo extensive thymic negative selection, but this process is impaired in NOD mice and also likely T1D patients. Previous studies identified an allelic variant of Nfkbid, a NF-κB signal modulator, as a gene strongly contributing to defective thymic deletion of autoreactive CD8 T cells in NOD mice. These previous studies found ablation of Nfkbid in NOD mice using the clustered regularly interspaced short palindromic repeats system resulted in greater thymic deletion of pathogenic CD8 AI4 and NY8.3 TCR transgenic T cells but an unexpected acceleration of T1D onset. This acceleration was associated with reductions in the frequency of peripheral Tregs. In this article, we report transgenic overexpression of Nfkbid in NOD mice also paradoxically results in enhanced thymic deletion of autoreactive CD8 AI4 T cells. However, transgenic elevation of Nfkbid expression also increased the frequency and functional capacity of peripheral Tregs, in part contributing to the induction of complete T1D resistance. Thus, future identification of a pharmaceutical means to enhance Nfkbid expression might ultimately provide an effective T1D intervention approach.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Animais , Linfócitos T CD8-Positivos , Diabetes Mellitus Experimental/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Linfócitos T Reguladores
4.
Proc Natl Acad Sci U S A ; 115(16): E3788-E3797, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610317

RESUMO

Borrelia burgdorferi is one of the few extracellular pathogens capable of establishing persistent infection in mammals. The mechanisms that sustain long-term survival of this bacterium are largely unknown. Here we report a unique innate immune evasion strategy of B. burgdorferi, orchestrated by a surface protein annotated as BBA57, through its modulation of multiple spirochete virulent determinants. BBA57 function is critical for early infection but largely redundant for later stages of spirochetal persistence, either in mammals or in ticks. The protein influences host IFN responses as well as suppresses multiple host microbicidal activities involving serum complement, neutrophils, and antimicrobial peptides. We also discovered a remarkable plasticity in BBA57-mediated spirochete immune evasion strategy because its loss, although resulting in near clearance of pathogens at the inoculum site, triggers nonheritable adaptive changes that exclude detectable nucleotide alterations in the genome but incorporate transcriptional reprograming events. Understanding the malleability in spirochetal immune evasion mechanisms that ensures their host persistence is critical for the development of novel therapeutic and preventive approaches to combat long-term infections like Lyme borreliosis.


Assuntos
Proteínas de Bactérias/fisiologia , Borrelia burgdorferi/imunologia , Evasão da Resposta Imune , Lipoproteínas/fisiologia , Proteínas de Membrana/fisiologia , Animais , Antígenos de Bactérias/imunologia , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Vetores Aracnídeos/microbiologia , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/patogenicidade , Células Cultivadas , Proteínas do Sistema Complemento/imunologia , Citocinas/biossíntese , Citocinas/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Ixodes/microbiologia , Lipoproteínas/genética , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos SCID , Organismos Livres de Patógenos Específicos , Virulência
5.
J Child Psychol Psychiatry ; 61(3): 312-332, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32020643

RESUMO

BACKGROUND: Adolescent major depressive disorder (MDD) is a significant health problem, associated with substantial morbidity, cost, and mortality. Depression is a significant risk factor for suicide, which is now the second leading cause of death in young people. Up to twenty per cent of adolescents will experience MDD before adulthood, and while a substantial proportion will improve with standard-of-care treatments (psychotherapy and medication), roughly one third will not. METHODS: Here, we have reviewed the literature in order to discuss the concept of treatment-resistant depression (TRD) in adolescence, examine risk factors, diagnostic difficulties, and challenges in evaluating symptom improvement, and providing guidance on how to define adequate medication and psychotherapy treatment trials. RESULTS: We propose a staging model for adolescent TRD and review the treatment literature. The evidence base for first- and second-line treatments primarily derives from four large pediatric clinical trials (TADS, TORDIA, ADAPT, and IMPACT). After two medications and a trial of evidence-based psychotherapy have failed to alleviate depressive symptoms, the evidence becomes quite thin for subsequent treatments. Here, we review the evidence for the effectiveness of medication switches, medication augmentation, psychotherapy augmentation, and interventional treatments (i.e., transcranial magnetic stimulation, electroconvulsive therapy, and ketamine) for adolescent TRD. Comparisons are drawn to the adult TRD literature, and areas for future pediatric depression research are highlighted. CONCLUSIONS: As evidence is limited for treatments in this population, a careful consideration of the known risks and side effects of escalated treatments (e.g., mood stabilizers and atypical antipsychotics) is warranted and weighed against potential, but often untested, benefits.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Resistente a Tratamento/diagnóstico , Transtorno Depressivo Resistente a Tratamento/terapia , Psicoterapia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Adolescente , Antidepressivos/administração & dosagem , Terapia Combinada , Quimioterapia Combinada , Humanos , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem
6.
J Immunol ; 201(7): 1907-1917, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30127089

RESUMO

In both NOD mice and humans, the development of type 1 diabetes (T1D) is dependent in part on autoreactive CD8+ T cells recognizing pancreatic ß cell peptides presented by often quite common MHC class I variants. Studies in NOD mice previously revealed that the common H2-Kd and/or H2-Db class I molecules expressed by this strain aberrantly lose the ability to mediate the thymic deletion of pathogenic CD8+ T cell responses through interactions with T1D susceptibility genes outside the MHC. A gene(s) mapping to proximal chromosome 7 was previously shown to be an important contributor to the failure of the common class I molecules expressed by NOD mice to mediate the normal thymic negative selection of diabetogenic CD8+ T cells. Using an inducible model of thymic negative selection and mRNA transcript analyses, we initially identified an elevated Nfkbid expression variant as a likely NOD-proximal chromosome 7 region gene contributing to impaired thymic deletion of diabetogenic CD8+ T cells. CRISPR/Cas9-mediated genetic attenuation of Nfkbid expression in NOD mice resulted in improved negative selection of autoreactive diabetogenic AI4 and NY8.3 CD8+ T cells. These results indicated that allelic variants of Nfkbid contribute to the efficiency of intrathymic deletion of diabetogenic CD8+ T cells. However, although enhancing thymic deletion of pathogenic CD8+ T cells, ablating Nfkbid expression surprisingly accelerated T1D onset that was associated with numeric decreases in both regulatory T and B lymphocytes in NOD mice.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Cromossomos Humanos Par 7/genética , Diabetes Mellitus Tipo 1/imunologia , Proteínas I-kappa B/genética , Timo/imunologia , Alelos , Animais , Autoantígenos/imunologia , Diferenciação Celular , Células Cultivadas , Deleção Clonal , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Proteínas I-kappa B/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Polimorfismo Genético
7.
J Vet Med Educ ; 47(5): 619-631, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33231519

RESUMO

Limitations in workforce size and access to resources remain perennial challenges to greater progress in academic veterinary medicine and engagement between human and veterinary medicine (One Health). Ongoing resource constraints occur in part due to limited public understanding of the role veterinarians play in improving human health. One Health interactions, particularly through interdisciplinary collaborations in biomedical research, present constructive opportunities to inform resource policies and advance health care. To this end, inter-institutional partnerships between individual veterinary medical education programs (VMEPs) and several National Institutes of Health (NIH) intramural research programs have created synergies beyond those provided by individual programs. In the NIH Comparative Biomedical Scientist Training Program (CBSTP), interdisciplinary cross-training of veterinarians consisting of specialty veterinary medicine coupled with training in human disease research leading to a PhD, occurs collaboratively on both VMEP and NIH campuses. Pre-doctoral veterinary student research opportunities have also been made available. Through the CBSTP, NIH investigators and national biomedical science policy makers gain access to veterinary perspective and expertise, while veterinarians obtain additional opportunities for NIH-funded research training. CBSTP Fellows serve as de facto ambassadors enhancing visibility for the profession while in residence at NIH, and subsequently through a variety of university, industry, and government research appointments, as graduates. Thus, the CBSTP represents an inter-institutional opportunity that not only addresses critical needs for veterinarian-scientists in the biomedical workforce, but also simultaneously exposes national policy makers to veterinarian-scientists' specialized training, leading to more effective realization of One Health goals to benefit human and animal health.


Assuntos
Pesquisa Biomédica , Educação em Veterinária , Saúde Única , Médicos Veterinários , Animais , Objetivos , Humanos , National Institutes of Health (U.S.) , Estados Unidos
8.
World J Urol ; 35(1): 21-26, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27172940

RESUMO

PURPOSE: Our objective was to determine the impact of preoperative frailty, as measured by validated Risk Analysis Index (RAI), on the occurrence of postoperative complications after urologic surgeries in a national database comprised of diverse practice groups and cases. STUDY DESIGN: The National Surgical Quality Improvement Program (NSQIP) database was queried from 2005 to 2011 for a list of abdominal, vaginal, transurethral and scrotal urological surgeries using Current Procedural Terminology codes. The study population was subdivided into two groups based on the nature of procedures performed: complex procedures (inpatient) and simple procedures (outpatient). Risk Analysis Index score was calculated using preoperative NSQIP variables to determine preoperative frailty. Major postoperative morbidities (pulmonary, cardiovascular, renal and infectious), mortality, return to operating room, discharge destination and readmission to the hospital were examined. RESULTS: The study identified 42,715 patients who underwent urological procedures, 25,693 complex and 17,022 simple procedures. Mean RAI score (range) was 7.75 (0-53). The majority of patients scored low on the RAI (90.57 % with RAI < 10). As the RAI score increased, there was a significant increase in postoperative complication and mortality rate (both p < 0.0001). Similarly, the rate of return to operating room and hospital readmission rate increased as RAI increased (both p < 0.0001). Additionally, rate of discharge to home decreased. Interestingly, mortality rate in patients with high RAI did not differ comparing simple to complex procedures (p = 0.90), whereas complications were significantly greater in the complex operation (p = 0.01). CONCLUSIONS: Increase in frailty, as measured by RAI score, is associated with increased postoperative complications and mortality. RAI may allow for rapid identification and counseling of patients who are at high risk of adverse perioperative outcomes.


Assuntos
Idoso Fragilizado , Mortalidade , Complicações Pós-Operatórias/epidemiologia , Procedimentos Cirúrgicos Urológicos/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Bases de Dados Factuais , Feminino , Humanos , Masculino , Estudos Retrospectivos , Medição de Risco , Fatores de Risco
10.
Proc Natl Acad Sci U S A ; 109(37): E2486-95, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22908270

RESUMO

The three lipin phosphatidate phosphatase (PAP) enzymes catalyze a step in glycerolipid biosynthesis, the conversion of phosphatidate to diacylglycerol. Lipin-1 is critical for lipid synthesis and homeostasis in adipose tissue, liver, muscle, and peripheral nerves. Little is known about the physiological role of lipin-2, the predominant lipin protein present in liver and the deficient gene product in the rare disorder Majeed syndrome. By using lipin-2-deficient mice, we uncovered a functional relationship between lipin-1 and lipin-2 that operates in a tissue-specific and age-dependent manner. In liver, lipin-2 deficiency led to a compensatory increase in hepatic lipin-1 protein and elevated PAP activity, which maintained lipid homeostasis under basal conditions, but led to diet-induced hepatic triglyceride accumulation. As lipin-2-deficient mice aged, they developed ataxia and impaired balance. This was associated with the combination of lipin-2 deficiency and an age-dependent reduction in cerebellar lipin-1 levels, resulting in altered cerebellar phospholipid composition. Similar to patients with Majeed syndrome, lipin-2-deficient mice developed anemia, but did not show evidence of osteomyelitis, suggesting that additional environmental or genetic components contribute to the bone abnormalities observed in patients. Combined lipin-1 and lipin-2 deficiency caused embryonic lethality. Our results reveal functional interactions between members of the lipin family in vivo, and a unique role for lipin-2 in central nervous system biology that may be particularly important with advancing age. Additionally, as has been observed in mice and humans with lipin-1 deficiency, the pathophysiology in lipin-2 deficiency is associated with dysregulation of lipid intermediates.


Assuntos
Envelhecimento/fisiologia , Cerebelo/fisiologia , Homeostase/fisiologia , Fígado/fisiologia , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase/metabolismo , Análise de Variância , Animais , Contagem de Células Sanguíneas , Western Blotting , Osso e Ossos/diagnóstico por imagem , Cerebelo/metabolismo , Primers do DNA/genética , Galactosídeos , Perfilação da Expressão Gênica , Técnicas Histológicas , Imuno-Histoquímica , Indóis , Fígado/metabolismo , Locomoção/fisiologia , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/deficiência , Fosfatidato Fosfatase/deficiência , Fosfolipídeos/metabolismo , Reação em Cadeia da Polimerase , Desempenho Psicomotor , Radiografia , Reflexo de Sobressalto/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-38886067

RESUMO

Multiple rodent models have been developed to study the basis of type 1 diabetes (T1D). However, nonobese diabetic (NOD) mice and derivative strains still provide the gold standard for dissecting the basis of the autoimmune responses underlying T1D. Here, we review the developmental origins of NOD mice, and how they and derivative strains have been used over the past several decades to dissect the genetic and immunopathogenic basis of T1D. Also discussed are ways in which the immunopathogenic basis of T1D in NOD mice and humans are similar or differ. Additionally reviewed are efforts to "humanize" NOD mice and derivative strains to provide improved models to study autoimmune responses contributing to T1D in human patients.

12.
J Child Adolesc Psychopharmacol ; 34(2): 73-79, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170185

RESUMO

Objective: Ketamine has proved effective as a rapid-acting antidepressant agent, but treatment is not effective for everyone (approximately a quarter to a half of patients). Some adult studies have begun to investigate predictors of ketamine's antidepressant response, but no studies have examined this in adolescents with depression. Methods: We conducted a secondary data analysis of adolescents who participated in a randomized, single-dose, midazolam-controlled crossover trial of ketamine for adolescents with treatment-resistant depression. We examined the relationship between 19 exploratory demographic and clinical variables and depression symptom improvement (using the Montgomery-Åsberg Depression Rating Scale [MADRS]) at 1 and 7 days postinfusion. Results: Subjects who had fewer medication trials of both antidepressant medications and augmentation treatments were more likely to experience depression symptom improvement with ketamine. Subjects with shorter duration of their current depressive episode were more likely to experience depression symptom improvement with ketamine. Subjects currently being treated with selective serotonin reuptake inhibitor medications, and not being treated with serotonin-norepinephrine reuptake inhibitor medications, also experienced greater symptom improvement with ketamine. When receiving the midazolam control, less severe depressive symptoms, as measured by the Children's Depression Rating Scale (CDRS) (but not MADRS), and a comorbid attention-deficit/hyperactivity disorder diagnosis were associated with increased response. Conclusions: Findings should be viewed as preliminary and exploratory given the small sample size and multiple secondary analyses. Identifying meaningful predictors of ketamine response is important to inform future therapeutic use of this compound, however, considerably more research is warranted before such clinical guidance is established. The trial was registered in clinicaltrials.gov with the identifier NCT02579928.


Assuntos
Ketamina , Adulto , Criança , Humanos , Adolescente , Ketamina/uso terapêutico , Depressão/tratamento farmacológico , Midazolam/uso terapêutico , Antidepressivos/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina
13.
Bioelectron Med ; 10(1): 4, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321561

RESUMO

BACKGROUND: Seizure detection is challenging outside the clinical environment due to the lack of comfortable, reliable, and practical long-term neurophysiological monitoring devices. We developed a novel, discreet, unobstructive in-ear sensing system that enables long-term electroencephalography (EEG) recording. This is the first study we are aware of that systematically compares the seizure detection utility of in-ear EEG with that of simultaneously recorded intracranial EEG. In addition, we present a similar comparison between simultaneously recorded in-ear EEG and scalp EEG. METHODS: In this foundational research, we conducted a clinical feasibility study and validated the ability of the ear-EEG system to capture focal-onset seizures against 1255 hrs of simultaneous ear-EEG data along with scalp or intracranial EEG in 20 patients with refractory focal epilepsy (11 with scalp EEG, 8 with intracranial EEG, and 1 with both). RESULTS: In a blinded, independent review of the ear-EEG signals, two epileptologists were able to detect 86.4% of the seizures that were subsequently identified using the clinical gold standard EEG modalities, with a false detection rate of 0.1 per day, well below what has been reported for ambulatory monitoring. The few seizures not detected on the ear-EEG signals emanated from deep within the mesial temporal lobe or extra-temporally and remained very focal, without significant propagation. Following multiple sessions of recording for a median continuous wear time of 13 hrs, patients reported a high degree of tolerance for the device, with only minor adverse events reported by the scalp EEG cohort. CONCLUSIONS: These preliminary results demonstrate the potential of using ear-EEG to enable routine collection of complementary, prolonged, and remote neurophysiological evidence, which may permit real-time detection of paroxysmal events such as seizures and epileptiform discharges. This study suggests that the ear-EEG device may assist clinicians in making an epilepsy diagnosis, assessing treatment efficacy, and optimizing medication titration.

14.
Int J Mol Sci ; 14(5): 10438-64, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23698773

RESUMO

Human prostatic acid phosphatase (PAcP) is a 100 kDa glycoprotein composed of two subunits. Recent advances demonstrate that cellular PAcP (cPAcP) functions as a protein tyrosine phosphatase by dephosphorylating ErbB-2/Neu/HER-2 at the phosphotyrosine residues in prostate cancer (PCa) cells, which results in reduced tumorigenicity. Further, the interaction of cPAcP and ErbB-2 regulates androgen sensitivity of PCa cells. Knockdown of cPAcP expression allows androgen-sensitive PCa cells to develop the castration-resistant phenotype, where cells proliferate under an androgen-reduced condition. Thus, cPAcP has a significant influence on PCa cell growth. Interestingly, promoter analysis suggests that PAcP expression can be regulated by NF-κB, via a novel binding sequence in an androgen-independent manner. Further understanding of PAcP function and regulation of expression will have a significant impact on understanding PCa progression and therapy.


Assuntos
Fosfatase Ácida/genética , Regulação Enzimológica da Expressão Gênica , Neoplasias da Próstata/genética , Transdução de Sinais/genética , Fosfatase Ácida/metabolismo , Sequência de Aminoácidos , Humanos , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Neoplasias da Próstata/enzimologia , Homologia de Sequência de Aminoácidos
15.
J Child Adolesc Psychopharmacol ; 33(1): 20-26, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36799961

RESUMO

Objective: Ketamine has proven effective as a rapid-acting antidepressant agent. Several adult studies have investigated the association between ketamine's acute dissociative effects and depression response, but no studies have examined the association in adolescents with treatment-resistant depression (TRD). Methods: We conducted a secondary data analysis of 16 adolescent participants who participated in a randomized, single-dose, midazolam-controlled crossover trial of ketamine in adolescents with depression. We examined the association between the acute dissociative symptoms (measured at 60 minutes following start of infusion using the Clinician-Administered Dissociative States Scale [CADSS], and its three subscales: depersonalization, derealization, amnesia) and response and depression symptom improvement at 1'day (using the Montgomery-Åsberg Depression Rating Scale). Results: Within the ketamine group, there were no significant associations between dissociation symptoms or CADSS subscale scores and magnitude of depression symptom improvement or likelihood of ketamine response. When receiving midazolam, there was no significant association between overall dissociation symptoms and magnitude or likelihood of response of depressive symptoms. Higher levels of symptoms on the 'depersonalization' CADSS subscale when receiving midazolam were associated with less improvement in depression symptoms at 1 day following infusion. Conclusions: In contrast to some adult literature, the current data do not show a relationship between acute dissociative effects and antidepressant response to ketamine in pediatric patients with TRD. Interpretation may be limited by the small sample size, reducing the power to detect small or medium associations. Future research should utilize larger samples to more definitively measure the magnitude of association between acute dissociative symptoms and later antidepressant response to ketamine and to assess the relationship to trial design (e.g., crossover vs. parallel trial, comparison condition utilized and number of infusions) within both adult and pediatric populations. ClinicalTrials.gov identifier: NCT02579928.


Assuntos
Transtorno Depressivo Maior , Transtorno Depressivo Resistente a Tratamento , Ketamina , Adulto , Humanos , Adolescente , Criança , Ketamina/efeitos adversos , Depressão/tratamento farmacológico , Midazolam/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Antidepressivos , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Resultado do Tratamento , Método Duplo-Cego
16.
Mar Pollut Bull ; 192: 115048, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37236091

RESUMO

The negative impacts of ocean warming and acidification on bivalve fisheries are well documented but few studies investigate parameters relevant to energy budgets and larval dispersal. This study used laboratory experiments to assess developmental, physiological and behavioral responses to projected climate change scenarios using larval Atlantic surfclams Spisula solidissima solidissima, found in northwest Atlantic Ocean continental shelf waters. Ocean warming increased feeding, scope for growth, and biomineralization, but decreased swimming speed and pelagic larval duration. Ocean acidification increased respiration but reduced immune performance and biomineralization. Growth increased under ocean warming only, but decreased under combined ocean warming and acidification. These results suggest that ocean warming increases metabolic activity and affects larval behavior, while ocean acidification negatively impacts development and physiology. Additionally, principal component analysis demonstrated that growth and biomineralization showed similar response profiles, but inverse response profiles to respiration and swimming speed, suggesting alterations in energy allocation under climate change.


Assuntos
Bivalves , Água do Mar , Animais , Concentração de Íons de Hidrogênio , Larva , Acidificação dos Oceanos , Mudança Climática , Temperatura , Oceanos e Mares , Aquecimento Global
17.
Science ; 379(6628): eabl3837, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36634189

RESUMO

Ancestral signaling pathways serve critical roles in metazoan development, physiology, and immunity. We report an evolutionary interspecies communication pathway involving a central Ixodes scapularis tick receptor termed Dome1, which acquired a mammalian cytokine receptor motif exhibiting high affinity for interferon-gamma (IFN-γ). Host-derived IFN-γ facilitates Dome1-mediated activation of the Ixodes JAK-STAT pathway. This accelerates tick blood meal acquisition and development while upregulating antimicrobial components. The Dome1-JAK-STAT pathway, which exists in most Ixodid tick genomes, regulates the regeneration and proliferation of gut cells-including stem cells-and dictates metamorphosis through the Hedgehog and Notch-Delta networks, ultimately affecting Ixodes vectorial competence. We highlight the evolutionary dependence of I. scapularis on mammalian hosts through cross-species signaling mechanisms that dually influence arthropod immunity and development.


Assuntos
Vetores Aracnídeos , Interações Hospedeiro-Parasita , Ixodes , Janus Quinases , Receptores de Citocinas , Fatores de Transcrição STAT , Animais , Interferon gama/metabolismo , Ixodes/genética , Ixodes/imunologia , Janus Quinases/genética , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Interações Hospedeiro-Parasita/imunologia , Receptores de Citocinas/metabolismo , Vetores Aracnídeos/imunologia
18.
J Proteome Res ; 11(3): 1561-70, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22214408

RESUMO

Determination of disease-relevant proteomic profiles from limited tissue specimens, such as pathological biopsies and tissues from small model organisms, remains an analytical challenge and a much needed clinical goal. In this study, a transgenic mouse disease model of cardiac-specific H-Ras-G12V induced hypertrophic cardiomyopathy provided a system to explore the potential of using mass spectrometry (MS)-based proteomics to obtain a disease-relevant molecular profile from amount-limited specimens that are routinely used in pathological diagnosis. Our method employs a two-stage methanol-assisted solubilization to digest lysates prepared from 8-µm-thick fresh-frozen histological tissue sections of diseased/experimental and normal/control hearts. Coupling this approach with a nanoflow reversed-phase liquid chromatography (LC) and a hybrid linear ion trap/Fourier transform-ion cyclotron resonance MS resulted in the identification of 704 and 752 proteins in hypertrophic and wild-type (control) myocardium, respectively. The disease driving H-Ras protein along with vimentin were unambiguously identified by LC-MS in hypertrophic myocardium and cross-validated by immunohistochemistry and western blotting. The pathway analysis involving proteins identified by MS showed strong association of proteomic data with cardiovascular disease. More importantly, the MS identification and subsequent cross-validation of Wnt3a and ß-catenin, in conjunction with IHC identification of phosphorylated GSK-3ß and nuclear localization of ß-catenin, provided evidence of Wnt/ß-catenin canonical pathway activation secondary to Ras activation in the course of pathogenic myocardial hypertrophic transformation. Our method yields results indicating that the described proteomic approach permits molecular discovery and assessment of differentially expressed proteins regulating H-Ras induced hypertrophic cardiomyopathy. Selected proteins and pathways can be further investigated using immunohistochemical techniques applied to serial tissue sections of similar or different origin.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Miocárdio/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Sequência de Aminoácidos , Animais , Cardiomiopatia Hipertrófica/genética , Cromatografia Líquida , Análise por Conglomerados , Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fragmentos de Peptídeos/química , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteoma/genética , Proteômica , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Vimentina/metabolismo , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
19.
Eur J Neurosci ; 36(12): 3698-708, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23009328

RESUMO

Neocortical networks produce oscillations that often correspond to characteristic physiological or pathological patterns. However, the mechanisms underlying the generation of and the transitions between such oscillatory states remain poorly understood. In this study, we examined resonance in mouse layer V neocortical pyramidal neurons. To accomplish this, we employed standard electrophysiology to describe cellular resonance parameters. Bode plot analysis revealed a range of resonance magnitude values in layer V neurons and demonstrated that both magnitude and phase response characteristics of layer V neocortical pyramidal neurons are modulated by changes in the extracellular environment. Specifically, increased resonant frequencies and total inductive areas were observed at higher extracellular potassium concentrations and more hyperpolarised membrane potentials. Experiments using pharmacological agents suggested that current through hyperpolarization-activated cyclic nucleotide-gated channels (I(h) ) acts as the primary driver of resonance in these neurons, with other potassium currents, such as A-type potassium current and delayed-rectifier potassium current (Kv1.4 and Kv1.1, respectively), contributing auxiliary roles. The persistent sodium current was also shown to play a role in amplifying the magnitude of resonance without contributing significantly to the phase response. Although resonance effects in individual neurons are small, their properties embedded in large networks may significantly affect network behavior and may have potential implications for pathological processes.


Assuntos
Potenciais da Membrana , Neocórtex/fisiologia , Rede Nervosa/fisiologia , Células Piramidais/fisiologia , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Canal de Potássio Kv1.1/antagonistas & inibidores , Canal de Potássio Kv1.1/fisiologia , Canal de Potássio Kv1.4/antagonistas & inibidores , Canal de Potássio Kv1.4/fisiologia , Camundongos , Camundongos Endogâmicos , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Sódio/metabolismo
20.
Eur J Neurosci ; 36(2): 2121-36, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22805058

RESUMO

Unraveling the mechanisms underlying oscillatory behavior is critical for understanding normal and pathological brain processes. Here we used electrophysiology in mouse neocortical slices and principles of nonlinear dynamics to demonstrate how an increase in the N-methyl-d-aspartic acid receptor (NMDAR) conductance can create a nonlinear whole-cell current-voltage (I-V) relationship which leads to changes in cellular stability. We discovered two behaviorally and morphologically distinct pyramidal cell populations. Under control conditions, both cell types responded to depolarizing current injection with regular spiking patterns. However, upon NMDAR activation, an intrinsic oscillatory (IO) cell type (n = 44) showed a nonlinear whole-cell I-V relationship, intrinsic voltage-dependent oscillations plus amplification of alternating input current, and these properties persisted after disabling action potential generation with tetrodotoxin (TTX). The other non-oscillatory (NO) neuronal population (n = 24) demonstrated none of these behaviors. Simultaneous intra- and extracellular recordings demonstrated the NMDAR's capacity to promote low-frequency seizure-like network oscillations via its effects on intrinsic neuronal properties. The two pyramidal cell types demonstrated different relationships with network oscillation--the IO cells were leaders that were activated early in the population activity cycle while the activation of the NO cell type was distributed across network bursts. The properties of IO neurons disappeared in a low-magnesium environment where the voltage dependence of the receptor is abolished; concurrently, the cellular contribution to network oscillation switched to synchronous firing. Thus, depending upon the efficacy of NMDAR in altering the linearity of the whole-cell I-V relationship, the two cell populations played different roles in sustaining network oscillation.


Assuntos
Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais de Ação , Animais , Magnésio/metabolismo , Camundongos , Camundongos Endogâmicos , Modelos Neurológicos , Neocórtex/citologia , Neocórtex/fisiologia , Rede Nervosa/fisiologia , Periodicidade , Células Piramidais/citologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa