Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 20(6): e3001677, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35696430

RESUMO

The valence and salience of individual odorants are modulated by an animal's innate preferences, learned associations, and internal state, as well as by the context of odorant presentation. The mechanisms underlying context-dependent flexibility in odor valence are not fully understood. Here, we show that the behavioral response of Caenorhabditis elegans to bacterially produced medium-chain alcohols switches from attraction to avoidance when presented in the background of a subset of additional attractive chemicals. This context-dependent reversal of odorant preference is driven by cell-autonomous inversion of the response to these alcohols in the single AWC olfactory neuron pair. We find that while medium-chain alcohols inhibit the AWC olfactory neurons to drive attraction, these alcohols instead activate AWC to promote avoidance when presented in the background of a second AWC-sensed odorant. We show that these opposing responses are driven via engagement of distinct odorant-directed signal transduction pathways within AWC. Our results indicate that context-dependent recruitment of alternative intracellular signaling pathways within a single sensory neuron type conveys opposite hedonic valences, thereby providing a robust mechanism for odorant encoding and discrimination at the periphery.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Álcoois , Animais , Caenorhabditis elegans/fisiologia , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Células Receptoras Sensoriais , Olfato/fisiologia
2.
Cell ; 142(1): 21-3, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20603011

RESUMO

How does a newborn neuron initiate and elaborate an axon? Using cutting-edge approaches, Yi et al. (2010) provide striking evidence that TGF-beta signaling via the Par polarity complex is required for axon formation by neocortical pyramidal neurons.

3.
Proc Natl Acad Sci U S A ; 117(17): 9584-9593, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32273386

RESUMO

Building a brain of the proper size and structure requires neural stem cells (NSCs) to divide with tight temporal and spatial control to produce different daughter cell types in proper numbers and sequence. Mammalian NSCs in the embryonic cortex must maintain their polarized epithelial structure as they undergo both early proliferative divisions and later neurogenic divisions. To do this, they undergo a polarized form of cytokinesis at the apical membrane that is not well understood. Here, we investigate whether polarized furrowing and abscission in mouse NSCs are regulated differently at earlier and later stages and in a cytokinesis mutant, Kif20b This mutant was previously shown to have microcephaly and elevated apoptosis of NSCs. We developed methods to live image furrow ingression and midbody abscission in NSCs within cortical explants. We find that polarized furrow ingression occurs at a steady rate and completes in ∼15 min at two different ages. However, ingression is slower in a subset of Kif20b mutant NSCs. Abscission is usually observed on both sides of the midbody and takes 65 to 75 min to complete. Surprisingly, abscission is accelerated in the Kif20b mutant NSCs. Postabscission midbody remnants are observed at the apical membranes of daughter cells and are much more abundant in early-stage cortices. After NSC divisions in vitro, midbody remnants are more often retained on the daughter cells of early proliferative divisions. Altogether, these results suggest that regulation of abscission timing and midbody remnants in embryonic NSCs may influence proper brain growth and structure.


Assuntos
Encéfalo/embriologia , Citocinese/fisiologia , Desenvolvimento Embrionário , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Animais , Anticorpos , Encéfalo/crescimento & desenvolvimento , Embrião de Mamíferos , Cinesinas/genética , Cinesinas/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação
4.
J Neurosci ; 41(15): 3344-3365, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33622776

RESUMO

To build the brain, embryonic neural stem cells (NSCs) tightly regulate their cell divisions, undergoing a polarized form of cytokinesis that is poorly understood. Cytokinetic abscission is mediated by the midbody to sever the daughter cells at the apical membrane. In cell lines, the coiled-coil protein Cep55 was reported to be required for abscission. Mutations of Cep55 in humans cause a variety of cortical malformations. However, its role in the specialized divisions of NSCs is unclear. Here, we elucidate the roles of Cep55 in abscission and brain development. KO of Cep55 in mice causes abscission defects in neural and non-neural cell types, and postnatal lethality. The brain is disproportionately affected, with severe microcephaly at birth. Quantitative analyses of abscission in fixed and live cortical NSCs show that Cep55 acts to increase the speed and success rate of abscission, by facilitating ESCRT recruitment and timely microtubule disassembly. However, most NSCs complete abscission successfully in the absence of Cep55 Those that fail show a tissue-specific response: binucleate NSCs and neurons elevate p53, but binucleate fibroblasts do not. This leads to massive apoptosis in the brain, but not other tissues. Double KO of both p53 and Cep55 blocks apoptosis but only partially rescues Cep55-/- brain size. This may be because of the persistent NSC cell division defects and p53-independent premature cell cycle exit. This work adds to emerging evidence that abscission regulation and error tolerance vary by cell type and are especially crucial in neural stem cells as they build the brain.SIGNIFICANCE STATEMENT During brain growth, embryonic neural stem cells (NSCs) must divide many times. In the last step of cell division, the daughter cell severs its connection to the mother stem cell, a process called abscission. The protein Cep55 is thought to be essential for recruiting proteins to the mother-daughter cell connection to complete abscission. We find that Cep55 mutants have very small brains with disturbed structure, but almost normal size bodies. NSC abscission can occur, but it is slower than normal, and failures are increased. Furthermore, NSCs that do fail abscission activate a signal for programmed cell death, whereas non-neural cells do not. Blocking this signal only partly restores brain growth, showing that regulation of abscission is crucial for brain development.


Assuntos
Apoptose , Proteínas de Ciclo Celular/metabolismo , Córtex Cerebral/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Divisão Celular , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Proteína Supressora de Tumor p53/metabolismo
5.
Hum Mol Genet ; 28(3): 434-447, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30304535

RESUMO

Building a cerebral cortex of the proper size involves balancing rates and timing of neural stem cell (NSC) proliferation, neurogenesis and cell death. The cellular mechanisms connecting genetic mutations to brain malformation phenotypes are still poorly understood. Microcephaly may result when NSC divisions are too slow, produce neurons too early or undergo apoptosis but the relative contributions of these cellular mechanisms to various types of microcephaly are not understood. We previously showed that mouse mutants in Kif20b (formerly called Mphosph1, Mpp1 or KRMP1) have small cortices that show elevated apoptosis and defects in maturation of NSC midbodies, which mediate cytokinetic abscission. Here we test the contribution of intrinsic NSC apoptosis to brain size reduction in this lethal microcephaly model. By making double mutants with the pro-apoptotic genes Bax and Trp53 (p53), we find that p53-dependent apoptosis of cortical NSCs accounts for most of the microcephaly, but that there is a significant apoptosis-independent contribution as well. Remarkably, heterozygous p53 deletion is sufficient to fully rescue survival of the Kif20b mutant into adulthood. In addition, the NSC midbody maturation defects are not rescued by p53 deletion, showing that they are either upstream of p53 activation, or in a parallel pathway. Accumulation of p53 in the nucleus of mutant NSCs at midbody stage suggests the possibility of a novel midbody-mediated pathway for p53 activation. This work elucidates both NSC apoptosis and abscission mechanisms that could underlie human microcephaly or other brain malformations.


Assuntos
Genes p53/genética , Microcefalia/genética , Células-Tronco Neurais/fisiologia , Animais , Apoptose/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Genes p53/fisiologia , Cinesinas/genética , Cinesinas/fisiologia , Masculino , Camundongos , Microcefalia/fisiopatologia , Mutação , Neurogênese/genética , Neurônios/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/fisiologia
6.
J Neurosci ; 36(45): 11394-11401, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27911741

RESUMO

This review accompanies a 2016 SFN mini-symposium presenting examples of current studies that address a central question: How do neural stem cells (NSCs) divide in different ways to produce heterogeneous daughter types at the right time and in proper numbers to build a cerebral cortex with the appropriate size and structure? We will focus on four aspects of corticogenesis: cytokinesis events that follow apical mitoses of NSCs; coordinating abscission with delamination from the apical membrane; timing of neurogenesis and its indirect regulation through emergence of intermediate progenitors; and capacity of single NSCs to generate the correct number and laminar fate of cortical neurons. Defects in these mechanisms can cause microcephaly and other brain malformations, and understanding them is critical to designing diagnostic tools and preventive and corrective therapies.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Citocinese/fisiologia , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Plasticidade Neuronal/fisiologia
7.
Development ; 140(23): 4672-82, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24173802

RESUMO

Mammalian neuroepithelial stem cells divide using a polarized form of cytokinesis, which is not well understood. The cytokinetic furrow cleaves the cell by ingressing from basal to apical, forming the midbody at the apical membrane. The midbody mediates abscission by recruiting many factors, including the Kinesin-6 family member Kif20b. In developing embryos, Kif20b mRNA is most highly expressed in neural stem/progenitor cells. A loss-of-function mutant in Kif20b, magoo, was found in a forward genetic screen. magoo has a small cerebral cortex, with reduced production of progenitors and neurons, but preserved layering. In contrast to other microcephalic mouse mutants, mitosis and cleavage furrows of cortical stem cells appear normal in magoo. However, apical midbodies show changes in number, shape and positioning relative to the apical membrane. Interestingly, the disruption of abscission does not appear to result in binucleate cells, but in apoptosis. Thus, Kif20b is required for proper midbody organization and abscission in polarized cortical stem cells and has a crucial role in the regulation of cerebral cortex growth.


Assuntos
Córtex Cerebral/metabolismo , Citocinese/fisiologia , Cinesinas/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Polaridade Celular/genética , Expressão Gênica , Cinesinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , RNA Mensageiro/biossíntese
8.
N Engl J Med ; 362(3): 206-16, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20089971

RESUMO

BACKGROUND: Establishing the genetic basis of phenotypes such as skeletal dysplasia in model organisms can provide insights into biologic processes and their role in human disease. METHODS: We screened mutagenized mice and observed a neonatal lethal skeletal dysplasia with an autosomal recessive pattern of inheritance. Through genetic mapping and positional cloning, we identified the causative mutation. RESULTS: Affected mice had a nonsense mutation in the thyroid hormone receptor interactor 11 gene (Trip11), which encodes the Golgi microtubule-associated protein 210 (GMAP-210); the affected mice lacked this protein. Golgi architecture was disturbed in multiple tissues, including cartilage. Skeletal development was severely impaired, with chondrocytes showing swelling and stress in the endoplasmic reticulum, abnormal cellular differentiation, and increased cell death. Golgi-mediated glycosylation events were altered in fibroblasts and chondrocytes lacking GMAP-210, and these chondrocytes had intracellular accumulation of perlecan, an extracellular matrix protein, but not of type II collagen or aggrecan, two other extracellular matrix proteins. The similarities between the skeletal and cellular phenotypes in these mice and those in patients with achondrogenesis type 1A, a neonatal lethal form of skeletal dysplasia in humans, suggested that achondrogenesis type 1A may be caused by GMAP-210 deficiency. Sequence analysis revealed loss-of-function mutations in the 10 unrelated patients with achondrogenesis type 1A whom we studied. CONCLUSIONS: GMAP-210 is required for the efficient glycosylation and cellular transport of multiple proteins. The identification of a mutation affecting GMAP-210 in mice, and then in humans, as the cause of a lethal skeletal dysplasia underscores the value of screening for abnormal phenotypes in model organisms and identifying the causative mutations.


Assuntos
Condrócitos/citologia , Códon sem Sentido , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Animais , Diferenciação Celular , Proliferação de Células , Proteínas do Citoesqueleto , Retículo Endoplasmático/ultraestrutura , Genes Recessivos , Glicosilação , Complexo de Golgi/ultraestrutura , Humanos , Camundongos , Camundongos Mutantes , Proteínas Nucleares/deficiência , Fenótipo , Polimorfismo de Nucleotídeo Único , Processamento de Proteína Pós-Traducional/fisiologia , Análise de Sequência de DNA
9.
Trends Cell Biol ; 31(10): 789-791, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34400044

RESUMO

Abscission is the second stage of cytokinesis. Cep55, a coiled-coil protein, is thought to recruit endosomal sorting complexes required for transport (ESCRTs) to the midbody to complete abscission. However, recent studies of Cep55-knockout mice reveal that most cells can complete abscission without Cep55. More work is needed to understand abscission mechanisms in different cell types.


Assuntos
Proteínas de Ciclo Celular , Citocinese , Animais , Proteínas de Ciclo Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Camundongos
10.
Curr Stem Cell Rep ; 7(4): 161-173, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36303610

RESUMO

Purpose of Review: How stem cells balance proliferation with differentiation, giving rise to specific daughter cells during development to build an embryo or tissue, remains an open question. Here, we discuss recent evidence that cytokinetic abscission regulation in stem cells, particularly neural stem cells (NSCs), is part of the answer. Abscission is a multi-step process mediated by the midbody, a microtubule-based structure formed in the intercellular bridge between daughter cells after mitosis. Recent Findings: Human mutations and mouse knockouts in abscission genes reveal that subtle disruptions of NSC abscission can cause brain malformations. Experiments in several epithelial systems have shown that midbodies serve as scaffolds for apical junction proteins and are positioned near apical membrane fate determinants. Abscission timing is tightly controlled and developmentally regulated in stem cells, with delayed abscission in early embryos and faster abscission later. Midbody remnants (MBRs) contain over 400 proteins and may influence polarity, fate, and ciliogenesis. Summary: As NSCs and other stem cells build tissues, they tightly regulate three aspects of abscission: midbody positioning, duration, and MBR handling. Midbody positioning and remnants establish or maintain cell polarity. MBRs are deposited on the apical membranes of epithelia, can be released or internalized by surrounding cells, and may sequester fate determinants or transfer information between cells. Work in cell lines and simpler systems has shown multiple roles for abscission regulation influencing stem cell polarity, potency, and daughter fates during development. Elucidating how the abscission process influences cell fate and tissue growth is important for our continued understanding of brain development and stem cell biology.

11.
Mol Biol Cell ; 29(2): 166-179, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29167382

RESUMO

Cytokinesis requires the cooperation of many cytoskeletal and membrane regulators. Most of the major players required for cytokinesis are known, but the temporal regulation and adaptations for different cell types are less understood. KIF20B (previously called MPHOSPH1 or MPP1) is a member of the Kinesin-6 family, which also includes the better-known members KIF23/MKLP1 and KIF20A/MKLP2. Previously, we showed that mouse Kif20b is involved in cerebral cortex growth and midbody organization of neural stem cells. Here, using siRNA-mediated knockdown of KIF20B in a human cell line and fixed and live imaging, we show that KIF20B has a cell-autonomous role in cytokinesis. KIF20B depletion affects the speed of both furrow ingression and abscission. It localizes to microtubules of the central spindle and midbody throughout cytokinesis, at sites distinct from the other Kinesin-6 family members. KIF20B is not required for midbody assembly, but may accelerate or coordinate midbody maturation. In particular, KIF20B appears to regulate late steps of maturation including anillin dispersal, ESCRT-III recruitment, and the formation of microtubule constriction sites.


Assuntos
Citocinese , Cinesinas/metabolismo , Microtúbulos/metabolismo , Citoesqueleto/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Cinesinas/genética
12.
J Comp Neurol ; 525(8): 1861-1878, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28299779

RESUMO

Endosomal maturation and transport constitutes a complex trafficking system present in all cell types. Neurons have adapted their endosomal system to meet their unique and complex needs. These adaptations include repurposing existing proteins to diversify endocytosis and trafficking, as well as preferential expression of certain regulators more highly in neurons than other cell types. These neuronal regulators include the family of Neuron-Specific Gene family members (Nsg), NEEP21 (Nsg1), and P19 (Nsg2). NEEP21/Nsg1 plays a role in the trafficking of multiple receptors, including the cell adhesion molecule L1/NgCAM, the neurotransmitter receptor GluA2, and ß-APP. Recently, we showed that NEEP2/Nsg1 and P19/Nsg2 are not expressed in all neuronal cell types in vitro. However, it is not known where and when NEEP21/Nsg1 and P19/Nsg2 are expressed in vivo, and whether both proteins are always coexpressed. Here, we show that NEEP21/Nsg1 and P19/Nsg2 are present in both overlapping and distinct cell populations in the hippocampus, neocortex, and cerebellum during development. NEEP21/Nsg1 and P19/Nsg2 levels are highest during embryonic development, and expression persists in the juvenile mouse brain. In particular, a subset of layer V cortical neurons retains relatively high expression of both NEEP21/Nsg1 and P19/Nsg2 at postnatal day 16 as well as in the CA1-3 regions of the hippocampus. In the cerebellum, NEEP21/Nsg1 expression becomes largely restricted to Purkinje neurons in adulthood whereas P19/Nsg2 expression strikingly disappears from the cerebellum with age. This divergent and restricted expression likely reflects differential needs for this class of trafficking regulators in different neurons during different stages of maturation.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Neurônios/metabolismo , Transporte Proteico/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Endossomos/metabolismo , Perfilação da Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/fisiologia , Transcriptoma
13.
Neural Dev ; 12(1): 5, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28359322

RESUMO

BACKGROUND: How neurons change their cytoskeleton to adopt their complex polarized morphology is still not understood. Growing evidence suggests that proteins that help build microtubule structures during cell division are also involved in building and remodeling the complex cytoskeletons of neurons. Kif20b (previously called MPP1 or Mphosph1) is the most divergent member of the Kinesin-6 family of "mitotic" kinesins that also includes Kif23/MKLP1 and Kif20a/MKLP2. We previously isolated a loss-of-function mouse mutant of Kif20b and showed that it had a thalamocortical axon guidance defect and microcephaly. METHODS: We demonstrate here, using the mouse mutant, that Kif20b is required for neuron morphogenesis in the embryonic neocortex. In vivo and in vitro cortical neurons were labeled and imaged to analyze various aspects of morphogenesis. RESULTS: Loss of Kif20b disrupts polarization as well as neurite outgrowth, branching and caliber. In vivo, mutant cortical neurons show defects in orientation, and have shorter thinner apical dendrites that branch closer to the cell body. In vitro, without external polarity cues, Kif20b mutant neurons show a strong polarization defect. This may be due in part to loss of the polarity protein Shootin1 from the axonal growth cone. Those mutant neurons that do succeed in polarizing have shorter axons with more branches, and longer minor neurites. These changes in shape are not due to alterations in cell fate or neuron layer type. Surprisingly, both axons and minor neurites of mutant neurons have increased widths and longer growth cone filopodia, which correlate with abnormal microtubule organization. Live analysis of axon extension shows that Kif20b mutant axons display more variable growth with increased retraction. CONCLUSIONS: These results demonstrate that Kif20b is required cell-autonomously for proper morphogenesis of cortical pyramidal neurons. Kif20b regulates neuron polarization, and axon and dendrite branching, outgrowth, and caliber. Kif20b protein may act by bundling microtubules into tight arrays and by localizing effectors such as Shootin1. Thus it may help shape neurites, sustain consistent axon growth, and inhibit branching. This work advances our understanding of how neurons regulate their cytoskeleton to build their elaborate shapes. Finally, it suggests that neuronal connectivity defects may be present in some types of microcephaly.


Assuntos
Polaridade Celular , Córtex Cerebral/embriologia , Cinesinas/genética , Morfogênese , Células Piramidais/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/citologia , Cones de Crescimento/metabolismo , Camundongos , Microtúbulos/fisiologia , Mutação , Proteínas do Tecido Nervoso/metabolismo , Neuritos/fisiologia , Pseudópodes/fisiologia , Células Piramidais/citologia
14.
Methods Cell Biol ; 131: 233-52, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26794517

RESUMO

Cytokinesis in neural progenitors occurs with specialized constraints due to their highly polarized structure and the need for both symmetric and asymmetric divisions. They must produce proper numbers of progenitors, neurons, and glia in a precise order. Yet very few functional studies of cytokinesis have been done in the developing brain. To elucidate mechanisms of cytokinesis during brain development, we designed a novel method to study cytokinesis in whole mount "slabs" of embryonic mouse cerebral cortex. It takes advantage of cytokinesis occurring on the ventricular surface of the cortex and allows examination of cytokinesis across many cells in the context of an intact brain tissue. The cortical slabs can be fixed for immunohistochemistry or used in live imaging experiments. In particular, we investigated mutants of the Kinesin-6, Kif20b, which show defects in cytokinetic abscission and have small brains. Here, we describe how to dissect neocortex from embryonic cerebral hemispheres, immunostain the cortical slabs for cytokinetic midbodies and other structures, and image the apical surface. We show how to quantitatively analyze apical structures including midbody numbers, organization, and morphology. New images and analyses of Kif20b(magoo) loss of function mutants are shown. Applying and adapting these types of analyses to other cytoskeletal proteins and mouse mutants will help advance our understanding on how the embryonic neuroepithelium generates neurons and builds the brain.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Citocinese/genética , Cinesinas/genética , Animais , Divisão Celular/genética , Divisão Celular/fisiologia , Células Cultivadas , Citocinese/fisiologia , Embrião de Mamíferos/citologia , Camundongos , Mutação/genética , Neurônios/metabolismo , Técnicas de Cultura de Órgãos
15.
J Comp Neurol ; 521(3): 677-96, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22821687

RESUMO

Proper development of axonal connections is essential for brain function. A forward genetic screen for mice with defects in thalamocortical development previously isolated a mutant called baffled. Here we describe the axonal defects of baffled in further detail and identify a point mutation in the Hspa5 gene, encoding the endoplasmic reticulum chaperone BiP/GRP78. This hypomorphic mutation of BiP disrupts proper development of the thalamocortical axon projection and other forebrain axon tracts, as well as cortical lamination. In baffled mutant brains, a reduced number of thalamic axons innervate the cortex by the time of birth. Thalamocortical and corticothalamic axons are delayed, overfasciculated, and disorganized along their pathway through the ventral telencephalon. Furthermore, dissociated mutant neurons show reduced axon extension in vitro. Together, these findings demonstrate a sensitive requirement for the endoplasmic reticulum chaperone BiP/GRP78 during axon outgrowth and pathfinding in the developing mammalian brain.


Assuntos
Axônios/fisiologia , Córtex Cerebral/anormalidades , Proteínas de Choque Térmico/genética , Tálamo/anormalidades , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Chaperona BiP do Retículo Endoplasmático , Feminino , Fibroblastos/citologia , Testes Genéticos , Idade Gestacional , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Vias Neurais/anormalidades , Vias Neurais/citologia , Vias Neurais/fisiologia , Gravidez , Prosencéfalo/anormalidades , Prosencéfalo/citologia , Prosencéfalo/fisiologia , Tálamo/citologia , Tálamo/fisiologia
16.
Neural Dev ; 6: 3, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21214893

RESUMO

BACKGROUND: The dorsal thalamus acts as a gateway and modulator for information going to and from the cerebral cortex. This activity requires the formation of reciprocal topographic axon connections between thalamus and cortex. The axons grow along a complex multistep pathway, making sharp turns, crossing expression boundaries, and encountering intermediate targets. However, the cellular and molecular components mediating these steps remain poorly understood. RESULTS: To further elucidate the development of the thalamocortical system, we first created a thalamocortical axon reporter line to use as a genetic tool for sensitive analysis of mutant mouse phenotypes. The TCA-tau-lacZ reporter mouse shows specific, robust, and reproducible labeling of thalamocortical axons (TCAs), but not the overlapping corticothalamic axons, during development. Moreover, it readily reveals TCA pathfinding abnormalities in known cortical mutants such as reeler. Next, we performed an unbiased screen for genes involved in thalamocortical development using random mutagenesis with the TCA reporter. Six independent mutant lines show aberrant TCA phenotypes at different steps of the pathway. These include ventral misrouting, overfasciculation, stalling at the corticostriatal boundary, and invasion of ectopic cortical cell clusters. An outcross breeding strategy coupled with a genomic panel of single nucleotide polymorphisms facilitated genetic mapping with small numbers of mutant mice. We mapped a ventral misrouting mutant to the Emx2 gene, and discovered that some TCAs extend to the olfactory bulbs in this mutant. Mapping data suggest that other lines carry mutations in genes not previously known for roles in thalamocortical development. CONCLUSIONS: These data demonstrate the feasibility of a forward genetic approach to understanding mammalian brain morphogenesis and wiring. A robust axonal reporter enabled sensitive analysis of a specific axon tract inside the mouse brain, identifying mutant phenotypes at multiple steps of the pathway, and revealing a new aspect of the Emx2 mutant. The phenotypes highlight vulnerable choice points and latent tendencies of TCAs, and will lead to a refined understanding of the elements and interactions required to form the thalamocortical system.


Assuntos
Axônios/fisiologia , Córtex Cerebral , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Mutação/genética , Fenótipo , Tálamo , Fatores de Transcrição/genética , Alquilantes/farmacologia , Animais , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Embrião de Mamíferos , Etilnitrosoureia/farmacologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Testes Genéticos/métodos , Óperon Lac/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/anormalidades , Vias Neurais/embriologia , Vias Neurais/crescimento & desenvolvimento , Proteína Reelina , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Tálamo/embriologia , Tálamo/crescimento & desenvolvimento , Tálamo/metabolismo , beta-Galactosidase/metabolismo
17.
Genome Res ; 16(3): 436-40, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16461637

RESUMO

Phenotype-driven genetics can be used to create mouse models of human disease and birth defects. However, the utility of these mutant models is limited without identification of the causal gene. To facilitate genetic mapping, we developed a fixed single nucleotide polymorphism (SNP) panel of 394 SNPs as an alternative to analyses using simple sequence length polymorphism (SSLP) marker mapping. With the SNP panel, chromosomal locations for 22 monogenic mutants were identified. The average number of affected progeny genotyped for mapped monogenic mutations is nine. Map locations for several mutants have been obtained with as few as four affected progeny. The average size of genetic intervals obtained for these mutants is 43 Mb, with a range of 17-83 Mb. Thus, our SNP panel allows for identification of moderate resolution map position with small numbers of mice in a high-throughput manner. Importantly, the panel is suitable for mapping crosses from many inbred and wild-derived inbred strain combinations. The chromosomal localizations obtained with the SNP panel allow one to quickly distinguish between potentially novel loci or remutations in known genes, and facilitates fine mapping and positional cloning. By using this approach, we identified DNA sequence changes in two ethylnitrosourea-induced mutants.


Assuntos
Mapeamento Cromossômico/métodos , Genoma , Camundongos/genética , Polimorfismo de Nucleotídeo Único , Animais , Clonagem de Organismos , Genótipo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa