Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Clin Pharmacol ; 85(5): 935-948, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30677788

RESUMO

AIMS: Erythropoiesis-stimulating agents used to treat anaemia in patients with chronic kidney disease (CKD) have been associated with cardiovascular adverse events. Hepcidin production, controlled by bone morphogenic protein 6 (BMP6), regulates iron homeostasis via interactions with the iron transporter, ferroportin. High hepcidin levels are thought to contribute to increased iron sequestration and subsequent anaemia in CKD patients. To investigate alternative therapies to erythropoiesis-stimulating agents for CKD patients, monoclonal antibodies, LY3113593 and LY2928057, targeting BMP6 and ferroportin respectively, were tested in CKD patients. METHODS: Preclinical in vitro/vivo data and clinical data in healthy subjects and CKD patients were used to illustrate the translation of pharmacological properties of LY3113593 and LY2928057, highlighting the novelty of targeting these nodes within the hepcidin-ferroportin pathway. RESULTS: LY2928057 bound ferroportin and blocked interactions with hepcidin, allowing iron efflux, leading to increased serum iron and transferrin saturation levels and increased hepcidin in monkeys and humans. In CKD patients, LY2928057 led to slower haemoglobin decline and reduction in ferritin (compared to placebo). Serum iron increase was (mean [90% confidence interval]) 1.98 [1.46-2.68] and 1.36 [1.22-1.51] fold-relative to baseline following LY2928057 600 mg and LY311593 150 mg respectively in CKD patients. LY3113593 specifically blocked BMP6 binding to its receptor and produced increases in iron and transferrin saturation and decreases in hepcidin preclinically and clinically. In CKD patients, LY3113593 produced an increase in haemoglobin and reduction in ferritin (compared to placebo). CONCLUSION: LY3113593 and LY2928057 pharmacological effects (serum iron and ferritin) were translated from preclinical-to-clinical development. Such interventions may lead to new CKD anaemia treatments.


Assuntos
Anemia/tratamento farmacológico , Fármacos Hematológicos/farmacologia , Hepcidinas/metabolismo , Insuficiência Renal Crônica/complicações , Transdução de Sinais/efeitos dos fármacos , Adulto , Anemia/sangue , Anemia/etiologia , Anemia/metabolismo , Animais , Proteína Morfogenética Óssea 6/antagonistas & inibidores , Proteína Morfogenética Óssea 6/metabolismo , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Ferritinas/sangue , Ferritinas/metabolismo , Voluntários Saudáveis , Fármacos Hematológicos/uso terapêutico , Hemoglobinas/análise , Humanos , Ferro/sangue , Ferro/metabolismo , Macaca fascicularis , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/metabolismo , Resultado do Tratamento , Adulto Jovem
2.
J Biol Chem ; 291(21): 11337-47, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27022022

RESUMO

Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts.


Assuntos
Reações Antígeno-Anticorpo , Modelos Imunológicos , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/metabolismo , Afinidade de Anticorpos , Antígenos de Superfície/química , Antígenos de Superfície/metabolismo , Linhagem Celular , Receptores ErbB/química , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Humanos , Cinética , Ligação Proteica , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/imunologia , Proteínas Proto-Oncogênicas c-met/metabolismo
3.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37427592

RESUMO

B cells contribute to multiple aspects of autoimmune disorders, and B cell-targeting therapies, including B cell depletion, have been proven to be efficacious in treatment of multiple autoimmune diseases. However, the development of novel therapies targeting B cells with higher efficacy and a nondepleting mechanism of action is highly desirable. Here we describe a nondepleting, high-affinity anti-human CD19 antibody LY3541860 that exhibits potent B cell inhibitory activities. LY3541860 inhibits B cell activation, proliferation, and differentiation of primary human B cells with high potency. LY3541860 also inhibits human B cell activities in vivo in humanized mice. Similarly, our potent anti-mCD19 antibody also demonstrates improved efficacy over CD20 B cell depletion therapy in multiple B cell-dependent autoimmune disease models. Our data indicate that anti-CD19 antibody is a highly potent B cell inhibitor that may have potential to demonstrate improved efficacy over currently available B cell-targeting therapies in treatment of autoimmune conditions without causing B cell depletion.


Assuntos
Doenças Autoimunes , Linfócitos B , Camundongos , Animais , Antígenos CD19 , Doenças Autoimunes/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa