Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 16(2): e1007618, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32049979

RESUMO

Computational modelling of in vivo protein synthesis is highly complicated, as it requires the simulation of ribosomal movement over the entire transcriptome, as well as consideration of the concentration effects from 40+ different types of tRNAs and numerous other protein factors. Here I report on the development of a stochastic model for protein translation that is capable of simulating the dynamical process of in vivo protein synthesis in a prokaryotic cell containing several thousand unique mRNA sequences, with explicit nucleotide information for each, and report on a number of biological predictions which are beyond the scope of existing models. In particular, I show that, when the complex network of concentration dependent interactions between elongation factors, tRNAs, ribosomes, and other factors required for protein synthesis are included in full detail, several biological phenomena, such as the increasing peptide elongation rate with bacterial growth rate, are predicted as emergent properties of the model. The stochastic model presented here demonstrates the importance of considering the translational process at this level of detail, and provides a platform to interrogate various aspects of translation that are difficult to study in more coarse-grained models.


Assuntos
Simulação por Computador , Ribossomos/metabolismo , Processos Estocásticos , Cinética , Elongação Traducional da Cadeia Peptídica , Reprodutibilidade dos Testes
2.
Biophys J ; 113(3): 506-516, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28793206

RESUMO

Previously, a stochastic model of single-stranded RNA virus assembly was created to model the cooperative effects between capsid proteins and genomic RNA that would occur in a packaging signal-mediated assembly process. In such an assembly scenario, multiple secondary structural elements from within the RNA, termed "packaging signals" (PS), contact coat proteins and facilitate efficient capsid assembly. In this work, the assembly model is extended to incorporate explicit nucleotide sequence information as well as simple aspects of RNA folding that would be occurring during the RNA/capsid coassembly process. Applying this paradigm to a dodecahedral viral capsid, a computer-derived nucleotide sequence is evolved de novo that is optimal for packaging the RNA into capsids, while also containing capacity for coding for a viral protein. Analysis of the effects of mutations on the ability of the RNA sequence to successfully package into a viral capsid reveals a complex fitness landscape where the majority of mutations are neutral with respect to packaging efficiency with a small number of mutations resulting in a near-complete loss of RNA packaging. Moreover, the model shows how attempts to ablate PSs in the viral RNA sequence may result in redundant PSs already present in the genome fulfilling their packaging role. This explains why recent experiments that attempt to ablate putative PSs may not see an effect on packaging. This modeling framework presents an example of how an implicit mapping can be made from genotype to a fitness parameter important for viral biology, i.e., viral capsid yield, with potential applications to theoretical models of viral evolution.


Assuntos
Modelos Biológicos , RNA Viral/genética , RNA Viral/metabolismo , Montagem de Vírus , Sequência de Bases , Cinética , Mutação , Conformação de Ácido Nucleico , RNA Viral/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa