Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Exp Biol ; 227(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353043

RESUMO

Many mammals hibernate during winter, reducing energy expenditure via bouts of torpor. The majority of a hibernator's energy reserves are used to fuel brief, but costly, arousals from torpor. Although arousals likely serve multiple functions, an important one is to restore water stores depleted during torpor. Many hibernating bat species require high humidity, presumably to reduce torpid water loss, but big brown bats (Eptesicus fuscus) appear tolerant of a wide humidity range. We tested the hypothesis that hibernating female E. fuscus use behavioural flexibility during torpor and arousals to maintain water balance and reduce energy expenditure. We predicted: (1) E. fuscus hibernating in dry conditions would exhibit more compact huddles during torpor and drink more frequently than bats in high humidity conditions; and (2) the frequency and duration of torpor bouts and arousals, and thus total loss of body mass would not differ between bats in the two environments. We housed hibernating E. fuscus in temperature- and humidity-controlled incubators at 50% or 98% relative humidity (8°C, 110 days). Bats in the dry environment maintained a more compact huddle during torpor and drank more frequently during arousals. Bats in the two environments had a similar number of arousals, but arousal duration was shorter in the dry environment. However, total loss of body mass over hibernation did not differ between treatments, indicating that the two groups used similar amounts of energy. Our results suggest that behavioural flexibility allows hibernating E. fuscus to maintain water balance and reduce energy costs across a wide range of hibernation humidities.


Assuntos
Quirópteros , Hibernação , Animais , Feminino , Umidade , Quirópteros/fisiologia , Hibernação/fisiologia , Nível de Alerta/fisiologia , Comportamento de Ingestão de Líquido , Água
2.
J Proteome Res ; 22(1): 182-192, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36479878

RESUMO

White-nose syndrome (WNS)-positive little brown bats (Myotis lucifugus) may exhibit immune responses including increased cytokine and pro-inflammatory mediator gene levels. Bioactive lipid mediators (oxylipins) formed by enzymatic oxidation of polyunsaturated fatty acids can contribute to these immune responses, but have not been investigated in WNS pathophysiology. Nonenzymatic conversion of polyunsaturated fatty acids can also occur due to reactive oxygen species, however, these enantiomeric isomers will lack the same signaling properties. In this study, we performed a series of targeted lipidomic approaches on laboratory Pseudogymnoascus destructans-inoculated bats to assess changes in their splenic lipidome, including the formation of lipid mediators at early stages of WNS. Hepatic lipids previously identified were also resolved to a higher structural detail. We compared WNS-susceptible M. lucifugus to a WNS-resistant species, the big brown bat (Eptesicus fuscus). Altered splenic lipid levels were only observed in M. lucifugus. Differences in splenic free fatty acids included both omega-3 and omega-6 compounds. Increased levels of an enantiomeric monohydroxy DHA mixture were found, suggesting nonenzymatic formation. Changes in previously identified hepatic lipids were confined to omega-3 constituents. Together, these results suggest that increased oxidative stress, but not an inflammatory response, is occurring in bats at early stages of WNS that precedes fat depletion. These data have been submitted to metabolomics workbench and assigned a study number ST002304.


Assuntos
Quirópteros , Hibernação , Animais , Quirópteros/fisiologia , Lipidômica , Ácidos Graxos não Esterificados , Citocinas , Síndrome
3.
Exp Physiol ; 106(4): 1005-1023, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33608952

RESUMO

NEW FINDINGS: What is the central question of this study? Adult homeotherms and heterotherms differ in cold and hypoxia tolerance and in how they match O2 supply and demand in response to these stressors. It has never been ascertained whether these differences reflect different developmental trajectories or whether they are already present at birth. What is the main finding and its importance? When exposed to cold and hypoxia, newborn rodents differed in how they matched O2 supply and demand, with responses reflecting the degree of heterothermic expression and tolerance. Our findings indicate that elements of the adult phenotype are already present at birth. ABSTRACT: There are physiological differences in how adult rodents regulate O2 supply and O2 demand when exposed to hypoxia in the cold. We examined whether these differences reflect divergent developmental trajectories of homeotherms and heterotherms or whether the differences are already present at birth. We exposed newborn rodents (0-4 days old) that ranged in heterothermic expression [a homeotherm, the rat (Rattus norvegicus); two facultative heterotherms, the mouse (Mus musculus) and the hamster (Mesocricetus auratus); and an obligate heterotherm, the ground squirrel (Ictidomys tridecemlineatus)] to either normoxia (21% O2 ) or hypoxia (7% O2 ) and measured their metabolic, thermoregulatory and ventilatory responses while progressively reducing the ambient temperature from 33 to 15°C. All newborns reduced their body temperature, O2 consumption rate and ventilation during progressive cooling, both in normoxia and in hypoxia. When progressively cooled in hypoxia, however, the homeothermic rats exhibited the greatest thermogenic response, depressed their O2 consumption rate the least and increased ventilation the most. In contrast, the obligate heterotherm, the ground squirrel, did not mount a thermogenic response, exhibited the greatest reduction in O2 consumption rate and increased O2 uptake not by increasing ventilation like the rat, but by extracting ≤80% of the O2 from each breath. Facultative heterotherms (mice and hamsters) exhibited responses in between these two extreme phenotypes. We conclude that even as newborns, homeotherms and heterotherms diverge in how they match O2 supply and O2 demand when progressively cooled in hypoxia, with responses reflecting the degree of heterothermic expression, in addition to reported hypoxia and cold tolerance.


Assuntos
Hipóxia , Roedores , Animais , Regulação da Temperatura Corporal/fisiologia , Temperatura Baixa , Cricetinae , Hipóxia/metabolismo , Camundongos , Consumo de Oxigênio/fisiologia , Ratos , Sistema Respiratório
4.
J Physiol ; 597(18): 4809-4829, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31365126

RESUMO

KEY POINTS: For small mammals living in a cold, hypoxic environment, supplying enough O2 to sustain thermogenesis can be challenging. While heterothermic mammals are generally more tolerant of cold and hypoxia than homeothermic mammals, how they regulate O2 supply and demand during progressive cooling in hypoxia is largely unknown. We show that as ambient temperature is reduced in hypoxia, body temperature falls in both homeotherms and heterotherms. In the homeothermic rat, a decrease in O2 consumption rate and lung O2 extraction accompany this fall in body temperature, despite a relative hyperventilation. Paradoxically, in heterothermic mice, hamsters and ground squirrels, body temperature decreases more than in the homeothermic rat, even though they maintain ventilation, increase lung O2 extraction and maintain or elevate their O2 consumption rates. Variation in cold and hypoxia tolerance among homeotherms and heterotherms reflects divergent strategies in how O2 supply and demand are regulated under thermal and hypoxic challenges. ABSTRACT: Compared to homeothermic mammals, heterothermic mammals are reported to be exceptionally tolerant of cold and hypoxia. We hypothesised that this variation in tolerance stems from divergent strategies in how homeotherms and heterotherms regulate O2 supply versus O2 demand when exposed to hypoxia during progressive cooling. To test this hypothesis, we exposed adult rodents ranging in their degree of heterothermic expression (homeotherm: rats, facultative heterotherms: mice and hamsters, and obligate heterotherm: ground squirrels) to either normoxia (21% O2 ) or environmental hypoxia (7% O2 ), while reducing ambient temperature from 38 to 5°C. We found that when ambient temperature was reduced in normoxia, all species increased their O2 consumption rate and ventilation in parallel, maintaining a constant ventilatory equivalent and level of lung O2 extraction. Surprisingly, body temperature fell in all species, significantly so in the heterotherms. When ambient temperature was reduced in hypoxia, however, the homeothermic rat decreased their O2 consumption rate and lung O2 extraction despite an increase in their ventilatory equivalent, indicative of a relative hyperventilation. Heterotherms (mice, hamsters and ground squirrels), on the other hand, decreased their ventilatory equivalent, but increased lung O2 extraction and maintained or elevated their O2 consumption rates, yet their body temperature fell even more than in the rat. These results are consistent with the idea that homeotherms and heterotherms diverge in the strategies they use to match O2 supply and O2 demand, and that enhanced cold and hypoxia tolerance in heterotherms may stem from an improved ability to extract O2 from the inspired air.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Hipóxia/fisiopatologia , Termogênese/fisiologia , Animais , Temperatura Baixa , Cricetinae , Feminino , Hiperventilação/fisiopatologia , Masculino , Camundongos , Consumo de Oxigênio/fisiologia , Ratos , Respiração
5.
J Exp Biol ; 222(Pt 3)2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30573665

RESUMO

In severe hypoxia, most vertebrates increase anaerobic energy production, which results in the development of a metabolic acidosis and an O2 debt that must be repaid during reoxygenation. Naked mole rats (NMRs) are among the most hypoxia-tolerant mammals, capable of drastically reducing their metabolic rate in acute hypoxia while staying active and alert. We hypothesized that a key component of remaining active is an increased reliance on anaerobic metabolism during severe hypoxia. To test this hypothesis, we exposed NMRs to progressive reductions in inspired O2 (9-3% O2) followed by reoxygenation (21% O2) and measured breathing frequency, heart rate, behavioural activity, body temperature, metabolic rate, and also metabolic substrates and pH in blood and tissues. We found that NMRs exhibit robust metabolic rate depression in acute hypoxia, accompanied by declines in all physiological and behavioural variables examined. However, blood and tissue pH were unchanged, and tissue concentrations of ATP and phosphocreatine were maintained. NMRs increased their reliance on carbohydrates in hypoxia, and glucose was mobilized from the liver to the blood. Upon reoxygenation, NMRs entered into a coma-like state for ∼15-20 min, during which metabolic rate was negligible and body temperature remained suppressed. However, an imbalance in the time taken for the rates of O2 uptake (V̇O2 ) and CO2 production (V̇CO2 ) to return to normoxic levels during reoxygenation hint at the possibility that NMRs do utilize anaerobic metabolism during hypoxia but have a tissue and/or blood buffering capacity that masks typical markers of metabolic acidosis, and that the synthesis of glucose from lactate, rather than lactate oxidation, is prioritized during recovery.


Assuntos
Ratos-Toupeira/fisiologia , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Acidose/fisiopatologia , Anaerobiose , Animais , Feminino , Masculino
6.
Proc Biol Sci ; 283(1827): 20160216, 2016 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-27009224

RESUMO

Naked mole rats are among the most hypoxia-tolerant mammals identified and live in chronic hypoxia throughout their lives. The physiological mechanisms underlying this tolerance, however, are poorly understood. Most vertebrates hyperventilate in acute hypoxia and exhibit an enhanced hyperventilation following acclimatization to chronic sustained hypoxia (CSH). Conversely, naked mole rats do not hyperventilate in acute hypoxia and their response to CSH has not been examined. In this study, we explored mechanisms of plasticity in the control of the hypoxic ventilatory response (HVR) and hypoxic metabolic response (HMR) of freely behaving naked mole rats following 8-10 days of chronic sustained normoxia (CSN) or CSH. Specifically, we investigated the role of the major inhibitory neurotransmitter γ-amino butyric acid (GABA) in mediating these responses. Our study yielded three important findings. First, naked mole rats did not exhibit ventilatory plasticity following CSH, which is unique among adult animals studied to date. Second, GABA receptor (GABAR) antagonism altered breathing patterns in CSN and CSH animals and modulated the acute HVR in CSN animals. Third, naked mole rats exhibited GABAR-dependent metabolic plasticity following long-term hypoxia, such that the basal metabolic rate was approximately 25% higher in normoxic CSH animals than CSN animals, and GABAR antagonists modulated this increase.


Assuntos
Metabolismo Basal , Ratos-Toupeira/fisiologia , Oxigênio/metabolismo , Transmissão Sináptica , Aclimatação , Anaerobiose , Animais , Metabolismo Basal/efeitos dos fármacos , Bicuculina/farmacologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-B/farmacologia , Masculino , Morfolinas/farmacologia , Distribuição Aleatória , Transmissão Sináptica/efeitos dos fármacos
7.
Proc Biol Sci ; 282(1800): 20141722, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25520355

RESUMO

Naked mole rats are the most hypoxia-tolerant mammals identified; however, the mechanisms underlying this tolerance are poorly understood. Using whole-animal plethysmography and open-flow respirometry, we examined the hypoxic metabolic response (HMR), hypoxic ventilatory response (HVR) and hypoxic thermal response in awake, freely behaving naked mole rats exposed to 7% O2 for 1 h. Metabolic rate and ventilation each reversibly decreased 70% in hypoxia (from 39.6 ± 2.9 to 12.1 ± 0.3 ml O2 min(-1) kg(-1), and 1412 ± 244 to 417 ± 62 ml min(-1) kg(-1), respectively; p < 0.05), whereas body temperature was unchanged and animals remained awake and active. Subcutaneous injection of the general adenosine receptor antagonist aminophylline (AMP; 100 mg kg(-1), in saline), but not control saline injections, prevented the HVR but had no effect on the HMR. As a result, AMP-treated naked mole rats exhibited extreme hyperventilation in hypoxia. These animals were also less tolerant to hypoxia, and in some cases hypoxia was lethal following AMP injection. We conclude that in naked mole rats (i) hypoxia tolerance is partially dependent on profound hypoxic metabolic and ventilatory responses, which are equal in magnitude but occur independently of thermal changes in hypoxia, and (ii) adenosine receptors mediate the HVR but not the HMR.


Assuntos
Hipóxia/metabolismo , Ratos-Toupeira/fisiologia , Receptores Purinérgicos P1/fisiologia , Aminofilina/farmacologia , Animais , Metabolismo Basal , Temperatura Corporal/fisiologia , Feminino , Hipóxia/fisiopatologia , Masculino , Antagonistas de Receptores Purinérgicos P1/farmacologia , Mecânica Respiratória/fisiologia , Vigília
8.
Artigo em Inglês | MEDLINE | ID: mdl-25698654

RESUMO

In response to varying environmental and physiological challenges, vertebrates have evolved complex and often overlapping systems. These systems detect changes in environmental oxygen availability and respond by increasing oxygen supply to the tissues and/or by decreasing oxygen demand at the cellular level. This suite of responses is termed the oxygen transport cascade and is comprised of several components. These components include 1) chemosensory detectors that sense changes in oxygen, carbon dioxide, and pH in the blood, and initiate changes in 2) ventilation and 3) cardiac work, thereby altering the rate of oxygen delivery to, and carbon dioxide clearance from, the tissues. In addition, changes in 4) cellular and systemic metabolism alters tissue-level metabolic demand. Thus the need for oxygen can be managed locally when increasing oxygen supply is not sufficient or possible. Together, these mechanisms provide a spectrum of responses that facilitate the maintenance of systemic oxygen homeostasis in the face of environmental hypoxia or physiological oxygen depletion (i.e. due to exercise or disease). Bill Milsom has dedicated his career to the study of these responses across phylogenies, repeatedly demonstrating the power of applying the comparative approach to physiological questions. The focus of this review is to discuss the anatomy, signalling pathways, and mechanics of each step of the oxygen transport cascade from the perspective of a Milsomite. That is, by taking into account the developmental, physiological, and evolutionary components of questions related to oxygen transport. We also highlight examples of some of the remarkable species that have captured Bill's attention through their unique adaptations in multiple components of the oxygen transport cascade, which allow them to achieve astounding physiological feats. Bill's research examining the oxygen transport cascade has provided important insight and leadership to the study of the diverse suite of adaptations that maintain cellular oxygen content across vertebrate taxa, which underscores the value of the comparative approach to the study of physiological systems.


Assuntos
Oxigênio/fisiologia , Vertebrados/fisiologia , Aclimatação , Animais , Evolução Biológica , Regulação da Temperatura Corporal , Fenômenos Fisiológicos Cardiovasculares , Células Quimiorreceptoras/fisiologia , Humanos , Hipóxia/fisiopatologia , Modelos Biológicos , Centro Respiratório/fisiologia , Músculos Respiratórios/fisiologia , Fenômenos Fisiológicos Respiratórios
9.
Viruses ; 15(9)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37766234

RESUMO

Ebola virus is a zoonotic pathogen with a geographic range covering diverse ecosystems that are home to many potential reservoir species. Although researchers have detected Ebola virus RNA and serological evidence of previous infection in different rodents and bats, the infectious virus has not been isolated. The field is missing critical knowledge about where the virus is maintained between outbreaks, either because the virus is rarely encountered, overlooked during sampling, and/or requires specific unknown conditions that regulate viral expression. This study assessed adipose tissue as a previously overlooked tissue capable of supporting Ebola virus infection. Adipose tissue is a dynamic endocrine organ helping to regulate and coordinate homeostasis, energy metabolism, and neuroendocrine and immune functions. Through in vitro infection of human and bat (Eptesicus fuscus) brown adipose tissue cultures using wild-type Ebola virus, this study showed high levels of viral replication for 28 days with no qualitative indicators of cytopathic effects. In addition, alterations in adipocyte metabolism following long-term infection were qualitatively observed through an increase in lipid droplet number while decreasing in size, a harbinger of lipolysis or adipocyte browning. The finding that bat and human adipocytes are susceptible to Ebola virus infection has important implications for potential tissue tropisms that have not yet been investigated. Additionally, the findings suggest how the metabolism of this tissue may play a role in pathogenesis, viral transmission, and/or zoonotic spillover events.


Assuntos
Quirópteros , Ebolavirus , Doença pelo Vírus Ebola , Animais , Humanos , Ecossistema , Ebolavirus/fisiologia , Tecido Adiposo , Linhagem Celular
10.
J Comp Physiol B ; 192(1): 171-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34426856

RESUMO

Species with broad geographic ranges may experience varied environmental conditions throughout their range leading to local adaptation. Variation among populations reflects potential adaptability or plasticity, with implications for populations impacted by disease, climate change, and other anthropogenic influences. However, behavior may counteract divergent selection among populations. We studied intraspecific variation in hibernation physiology of Myotis lucifugus (little brown myotis) and Corynorhinus townsendii (Townsend's big-eared bat), two species of bats with large geographic ranges. We studied M. lucifugus at three hibernacula which spanned a latitudinal gradient of 1500 km, and C. townsendii from 6 hibernacula spread across 1200 km latitude and 1200 km longitude. We found no difference in torpid metabolic rate among populations of either species, nor was there a difference in the effect of ambient temperature among sites. Evaporative water loss was similar among populations of both species, with the exception of one C. townsendii pairwise site difference and one M. lucifugus site that differed from the others. We suggest the general lack of geographic variation is a consequence of behavioral microhabitat selection. As volant animals, bats can travel relatively long distances in search of preferred microclimates for hibernation. Despite dramatic macroclimate differences among populations, hibernating bats are able to find preferred microclimate conditions within their range, resulting in similar selection pressures among populations spread across wide geographic ranges.


Assuntos
Quirópteros , Hibernação , Adaptação Fisiológica , Animais , Quirópteros/fisiologia , Hibernação/fisiologia , Microclima
11.
Sci Rep ; 11(1): 20759, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675252

RESUMO

Hibernation is widespread among mammals in a variety of environmental contexts. However, few experimental studies consider interspecific comparisons, which may provide insight into general patterns of hibernation strategies. We studied 13 species of free-living bats, including populations spread over thousands of kilometers and diverse habitats. We measured torpid metabolic rate (TMR) and evaporative water loss (two key parameters for understanding hibernation energetics) across a range of temperatures. There was no difference in minimum TMR among species (i.e., all species achieved similarly low torpid metabolic rate) but the temperature associated with minimum TMR varied among species. The minimum defended temperature (temperature below which TMR increased) varied from 8 °C to < 2 °C among species. Conversely, evaporative water loss varied among species, with species clustered in two groups representing high and low evaporative water loss. Notably, species that have suffered population declines due to white-nose syndrome fall in the high evaporative water loss group and less affected species in the low evaporative water loss group. Documenting general patterns of physiological diversity, and associated ecological implications, contributes to broader understanding of biodiversity, and may help predict which species are at greater risk of environmental and anthropogenic stressors.


Assuntos
Quirópteros/fisiologia , Hibernação , Perda Insensível de Água , Animais , Regulação da Temperatura Corporal , Metabolismo Energético , Temperatura , Água/metabolismo
12.
Ecol Evol ; 11(1): 506-515, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437446

RESUMO

In multihost disease systems, differences in mortality between species may reflect variation in host physiology, morphology, and behavior. In systems where the pathogen can persist in the environment, microclimate conditions, and the adaptation of the host to these conditions, may also impact mortality. White-nose syndrome (WNS) is an emerging disease of hibernating bats caused by an environmentally persistent fungus, Pseudogymnoascus destructans. We assessed the effects of body mass, torpid metabolic rate, evaporative water loss, and hibernaculum temperature and water vapor deficit on predicted overwinter survival of bats infected by P. destructans. We used a hibernation energetics model in an individual-based model framework to predict the probability of survival of nine bat species at eight sampling sites across North America. The model predicts time until fat exhaustion as a function of species-specific host characteristics, hibernaculum microclimate, and fungal growth. We fit a linear model to determine relationships with each variable and predicted survival and semipartial correlation coefficients to determine the major drivers in variation in bat survival. We found host body mass and hibernaculum water vapor deficit explained over half of the variation in survival with WNS across species. As previous work on the interplay between host and pathogen physiology and the environment has focused on species with narrow microclimate preferences, our view on this relationship is limited. Our results highlight some key predictors of interspecific survival among western bat species and provide a framework to assess impacts of WNS as the fungus continues to spread into western North America.

13.
Sci Rep ; 11(1): 11581, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078939

RESUMO

White-nose syndrome (WNS) is an emergent wildlife fungal disease of cave-dwelling, hibernating bats that has led to unprecedented mortalities throughout North America. A primary factor in WNS-associated bat mortality includes increased arousals from torpor and premature fat depletion during winter months. Details of species and sex-specific changes in lipid metabolism during WNS are poorly understood and may play an important role in the pathophysiology of the disease. Given the likely role of fat metabolism in WNS and the fact that the liver plays a crucial role in fatty acid distribution and lipid storage, we assessed hepatic lipid signatures of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus) at an early stage of infection with the etiological agent, Pseudogymnoascus destructans (Pd). Differences in lipid profiles were detected at the species and sex level in the sham-inoculated treatment, most strikingly in higher hepatic triacylglyceride (TG) levels in E. fuscus females compared to males. Interestingly, several dominant TGs (storage lipids) decreased dramatically after Pd infection in both female M. lucifugus and E. fuscus. Increases in hepatic glycerophospholipid (structural lipid) levels were only observed in M. lucifugus, including two phosphatidylcholines (PC [32:1], PC [42:6]) and one phosphatidylglycerol (PG [34:1]). These results suggest that even at early stages of WNS, changes in hepatic lipid mobilization may occur and be species and sex specific. As pre-hibernation lipid reserves may aid in bat persistence and survival during WNS, these early perturbations to lipid metabolism could have important implications for management responses that aid in pre-hibernation fat storage.


Assuntos
Ascomicetos/patogenicidade , Quirópteros/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Micoses/metabolismo , Animais , Feminino , Masculino , Especificidade da Espécie
14.
Respir Physiol Neurobiol ; 272: 103313, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626974

RESUMO

In rodents, the ventilatory responses to hypoxia (low O2) and hypercarbia (high CO2) change significantly over postnatal development. In hypoxia, most adult rodents increase ventilation and decrease metabolism to some degree. Hypercarbia, however, leads to an increase in ventilation with little, to no change in metabolism. Neonates, on the other hand, respond to hypoxia with a profound metabolic depression, and a severely attenuated ventilatory response. In hypercarbia, they exhibit a strong ventilatory response early in development that blunts, reaches a nadir, and then rises back to the adult-like response, thus, stabilizing postnatally. In this review we discuss how the O2 and CO2 ventilatory responses develop in rodents, the possible mechanisms that drive these postnatal changes, and how being raised in a burrow, an environment putatively low in O2 and high in CO2, may affect the development of O2 and CO2 sensitivity in rodents.


Assuntos
Dióxido de Carbono/metabolismo , Células Quimiorreceptoras/fisiologia , Hipercapnia , Hipóxia , Oxigênio/metabolismo , Fenômenos Fisiológicos Respiratórios , Sensação/fisiologia , Animais , Animais Recém-Nascidos , Células Quimiorreceptoras/metabolismo , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Roedores
15.
Virulence ; 11(1): 781-794, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32552222

RESUMO

Understanding how context (e.g., host species, environmental conditions) drives disease susceptibility is an essential goal of disease ecology. We hypothesized that in bat white-nose syndrome (WNS), species-specific host-pathogen interactions may partly explain varying disease outcomes among host species. We characterized bat and pathogen transcriptomes in paired samples of lesion-positive and lesion-negative wing tissue from bats infected with Pseudogymnoascus destructans in three parallel experiments. The first two experiments analyzed samples collected from the susceptible Nearctic Myotis lucifugus and the less-susceptible Nearctic Eptesicus fuscus, following experimental infection and hibernation in captivity under controlled conditions. The third experiment applied the same analyses to paired samples from infected, free-ranging Myotis myotis, a less susceptible, Palearctic species, following natural infection and hibernation (n = 8 sample pairs/species). Gene expression by P. destructans was similar among the three host species despite varying environmental conditions among the three experiments and was similar within each host species between saprophytic contexts (superficial growth on wings) and pathogenic contexts (growth in lesions on the same wings). In contrast, we observed qualitative variation in host response: M. lucifugus and M. myotis exhibited systemic responses to infection, while E. fuscus up-regulated a remarkably localized response. Our results suggest potential phylogenetic determinants of response to WNS and can inform further studies of context-dependent host-pathogen interactions.


Assuntos
Ascomicetos/genética , Quirópteros/microbiologia , Dermatomicoses/veterinária , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Animais , Ascomicetos/patogenicidade , Quirópteros/classificação , Dermatomicoses/microbiologia , Nariz/microbiologia , Nariz/patologia , Filogenia , Especificidade da Espécie , Asas de Animais/microbiologia , Asas de Animais/patologia
16.
Respir Physiol Neurobiol ; 264: 19-27, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30930258

RESUMO

Burrowing rodents have a blunted ventilatory response to CO2 in comparison to non-burrowing rodents. Non-burrowing rats display a period during development where ventilatory responses to hypercarbia become transiently blunted. This study examined the ventilatory responses to CO2 of rats, hamsters and ground squirrels through neonatal development to determine whether the blunted adult response of burrowing species is a retention of the blunting period seen in rats or present from birth. All three species increased ventilation in response to hypercarbia on the day of birth (70-170% in response to 5% CO2; 100-250% in response to 7% CO2). Rats in our study exhibited the triphasic ventilatory response (when expressed as %Δ) to CO2 previously described. In golden-Syrian hamsters, the ventilatory response slowly and progressively waned to a blunted adult response while in the 13-lined ground squirrels, the early ventilatory response to CO2 decreased within days and remained attenuated through development. Our study shows three distinct developmental patterns in the hypercarbic ventilatory response.


Assuntos
Dióxido de Carbono , Hipercapnia/fisiopatologia , Taxa Respiratória/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Mesocricetus , Gravidez , Ratos , Ratos Sprague-Dawley , Sciuridae , Especificidade da Espécie
17.
Front Physiol ; 10: 106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833905

RESUMO

Naked mole rats (Heterocephalus glaber) are among the most hypoxia-tolerant mammals, but their physiological responses to acute and chronic sustained hypoxia (CSH), and the molecular underpinnings of these responses, are poorly understood. In the present study we evaluated the acute hypoxic ventilatory response and the occurrence of ventilatory acclimatization to hypoxia following CSH exposure (8-10 days in 8% O2) of naked mole rats. We also investigated the role of excitatory glutamatergic signaling in the control of ventilation and metabolism in these conditions. Animals acclimated to normoxia (control) or CSH and then exposed to acute hypoxia (7% O2 for 1 h) exhibited elevated tidal volume (VT), but decreased breathing frequency (fR). As a result, total ventilation ( V . E) remained unchanged. Conversely, VT was lower in CSH animals relative to controls, suggesting that there is ventilatory plasticity following acclimatization to chronic hypoxia. Both control and CSH-acclimated naked mole rats exhibited similar 60-65% decreases in O2 consumption rate during acute hypoxia, and as a result their air convection requirement (ACR) increased ∼2.4 to 3-fold. Glutamatergic receptor inhibition decreased fR, V . E, and the rate of O2 consumption in normoxia but did not alter these ventilatory or metabolic responses to acute hypoxia in either the control or CSH groups. Taken together, these findings indicate that ventilatory acclimatization to hypoxia is atypical in naked mole rats, and glutamatergic signaling is not involved in their hypoxic ventilatory or metabolic responses to acute or chronic hypoxia.

18.
Artigo em Inglês | MEDLINE | ID: mdl-29355712

RESUMO

Most small rodents reduce energy demand in hypoxia via behavioural strategies. For example, animals may reduce their activity, and/or move to colder environments or alter huddling strategies to take advantage of anapyretical energy savings. Naked mole rats (NMRs) are among the most hypoxia tolerant mammals and are highly social; social interactions also have a significant impact on behaviour. Therefore, this species offers a fascinating model in which to study trade-offs between social interactions and energy conservation in hypoxia. We hypothesized that the need to conserve energy in hypoxia supersedes the impetus of sociality in this species and predicted that, in hypoxia, behaviour would not differ between individuals or groups of NMRs. To test this hypothesis, we placed awake, freely behaving NMRs, alone or in groups of 2 or 4, into a temperature-controlled apparatus and measured behavioural activity during 1 h each of normoxia (21% O2), acute hypoxia (7% O2), and normoxic recovery. We found that in normoxia, groups of 4 NMRs were significantly more active in all temperatures than were groups of 1-2 NMRs. When exposed to hypoxia, individual NMRs were ~50% less active and their speed was reduced relative to normoxic levels. Conversely, groups of 2 or 4 NMRs exhibited minor or insignificant decreases in time spent active and speed in hypoxia and huddling behaviour was not altered. Our findings suggest that social interactions influence behavioural strategies employed by NMRs in hypoxia.


Assuntos
Comportamento Animal , Hipóxia , Oxigênio/metabolismo , Doença Aguda , Animais , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Ratos-Toupeira
19.
Sci Rep ; 8(1): 15508, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341341

RESUMO

Spillover of viruses from bats to other animals may be associated with increased contact between them, as well as increased shedding of viruses by bats. Here, we tested the prediction that little brown bats (Myotis lucifugus) co-infected with the M. lucifugus coronavirus (Myl-CoV) and with Pseudogymnoascus destructans (Pd), the fungus that causes bat white-nose syndrome (WNS), exhibit different disease severity, viral shedding and molecular responses than bats infected with only Myl-CoV or only P. destructans. We took advantage of the natural persistence of Myl-CoV in bats that were experimentally inoculated with P. destructans in a previous study. Here, we show that the intestines of virus-infected bats that were also infected with fungus contained on average 60-fold more viral RNA than bats with virus alone. Increased viral RNA in the intestines correlated with the severity of fungus-related pathology. Additionally, the intestines of bats infected with fungus exhibited different expression of mitogen-activated protein kinase pathway and cytokine related transcripts, irrespective of viral presence. Levels of coronavirus antibodies were also higher in fungal-infected bats. Our results suggest that the systemic effects of WNS may down-regulate anti-viral responses in bats persistently infected with M. lucifugus coronavirus and increase the potential of virus shedding.


Assuntos
Ascomicetos/fisiologia , Quirópteros/microbiologia , Quirópteros/virologia , Coronavirus/fisiologia , Micoses/veterinária , Replicação Viral/fisiologia , Animais , Anticorpos Antivirais/metabolismo , Coinfecção/microbiologia , Coinfecção/virologia , Regulação da Expressão Gênica , Imunidade Inata/genética , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/virologia , Masculino , Modelos Biológicos , RNA Viral/metabolismo
20.
J Comp Physiol B ; 183(2): 279-88, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22972361

RESUMO

In mammals, reproduction, especially for females is energetically demanding. Therefore, during the reproductive period females could potentially adjust patterns of thermoregulation and foraging in concert to minimise the energetic constraints associated with pregnancy and lactation. We assessed the influence of pregnancy, lactation, and post-lactation on torpor use and foraging behaviour by female little brown bats, Myotis lucifugus. We measured thermoregulation by recording skin temperature and foraging by tracking bats which carried temperature-sensitive radio-tags. We found that individuals, regardless of reproductive condition, used torpor, but the patterns of torpor use varied significantly between reproductive (pregnant and lactating) females and post-lactating females. As we predicted, reproductive females entered torpor for shorter bouts than post-lactating females. Although all females used torpor frequently, pregnant females spent less time in torpor, and maintained higher skin temperatures than either lactating or post-lactating females. This result suggests that delayed offspring development which has been associated with torpor use during pregnancy, may pose a higher risk to an individual's reproductive success than reduced milk production during lactation. Conversely, foraging behaviour of radio-tagged bats did not vary with reproductive condition, suggesting that even short, shallow bouts of torpor produce substantial energy savings, likely obviating the need to spend more time foraging. Our data clearly show that torpor use and reproduction are not mutually exclusive and that torpor use (no matter how short or shallow) is an important means of balancing the costs of reproduction for M. lucifugus.


Assuntos
Adaptação Fisiológica/fisiologia , Regulação da Temperatura Corporal/fisiologia , Quirópteros/fisiologia , Lactação/fisiologia , Reprodução/fisiologia , Análise de Variância , Animais , Comportamento Apetitivo/fisiologia , Temperatura Corporal , Feminino , Modelos Lineares , New York , Gravidez , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa