Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 57(18): 5004-5010, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30117959

RESUMO

A new generation of cameras has made ultra-high-speed x-ray imaging at synchrotron light sources a reality, revealing never-before-seen details of sub-surface transient phenomena. We introduce a versatile indirect imaging system capable of capturing-for the first time-hundreds of sequential x-ray pulses in 16-bunch mode at the European Synchrotron Radiation Facility, recording at 5.68 Mfps over dozens of microseconds, with an effective exposure of 100 ps. The versatile multiplex camera construction of the system allows for various arrangements, including different scintillator configurations, and simultaneous imaging with different resolutions and regions of interest. Image results from a gas gun impact experiment, in which an additive manufactured aluminum lattice was dynamically compressed, is presented as a demonstration of the system's capabilities.

2.
J Synchrotron Radiat ; 23(Pt 3): 685-93, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27140147

RESUMO

The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

3.
Phys Rev Lett ; 114(17): 174301, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978237

RESUMO

When a metal is subjected to extremely rapid compression, a shock wave is launched that generates dislocations as it propagates. The shock wave evolves into a characteristic two-wave structure, with an elastic wave preceding a plastic front. It has been known for more than six decades that the amplitude of the elastic wave decays the farther it travels into the metal: this is known as "the decay of the elastic precursor." The amplitude of the elastic precursor is a dynamic yield point because it marks the transition from elastic to plastic behavior. In this Letter we provide a full explanation of this attenuation using the first method of dislocation dynamics to treat the time dependence of the elastic fields of dislocations explicitly. We show that the decay of the elastic precursor is a result of the interference of the elastic shock wave with elastic waves emanating from dislocations nucleated in the shock front. Our simulations reproduce quantitatively recent experiments on the decay of the elastic precursor in aluminum and its dependence on strain rate.

4.
Rev Sci Instrum ; 88(4): 044902, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28456242

RESUMO

When designing a spectral-band pyrometer for use at high time resolutions (sub-µs), there is ambiguity regarding the optimum characteristics for a spectral filter(s). In particular, while prior work has discussed uncertainties in spectral-band pyrometry, there has been little discussion of the effects of noise which is an important consideration in time-resolved, high speed experiments. Using a Monte-Carlo process to simulate the effects of noise, a model of collection from a black body has been developed to give insights into the optimum choices for centre wavelength and passband width. The model was validated and then used to explore the effects of centre wavelength and passband width on measurement uncertainty. This reveals a transition centre wavelength below which uncertainties in calculated temperature are high. To further investigate system performance, simultaneous variation of the centre wavelength and bandpass width of a filter is investigated. Using data reduction, the effects of temperature and noise levels are illustrated and an empirical approximation is determined. The results presented show that filter choice can significantly affect instrument performance and, while best practice requires detailed modelling to achieve optimal performance, the expression presented can be used to aid filter selection.

5.
Sci Rep ; 7: 45206, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28555619

RESUMO

Chondritic meteorites are fragments of asteroids, the building blocks of planets, that retain a record of primordial processes. Important in their early evolution was impact-driven lithification, where a porous mixture of millimetre-scale chondrule inclusions and sub-micrometre dust was compacted into rock. In this Article, the shock compression of analogue precursor chondrite material was probed using state of the art dynamic X-ray radiography. Spatially-resolved shock and particle velocities, and shock front thicknesses were extracted directly from the radiographs, representing a greatly enhanced scope of data than could be measured in surface-based studies. A statistical interpretation of the measured velocities showed that mean values were in good agreement with those predicted using continuum-level modelling and mixture theory. However, the distribution and evolution of wave velocities and wavefront thicknesses were observed to be intimately linked to the mesoscopic structure of the sample. This Article provides the first detailed experimental insight into the distribution of extreme states within a shocked powder mixture, and represents the first mesoscopic validation of leading theories concerning the variation in extreme pressure-temperature states during the formation of primordial planetary bodies.

7.
J Vis Exp ; (100): e52463, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26168019

RESUMO

The dynamic fracture of a body is a late-stage phenomenon typically studied under simplified conditions, in which a sample is deformed under uniform stress and strain rate. This can be produced by evenly loading the inner surface of a cylinder. Due to the axial symmetry, as the cylinder expands the wall is placed into a tensile hoop stress that is uniform around the circumference. While there are various techniques to generate this expansion such as explosives, electromagnetic drive, and existing gas gun techniques they are all limited in the fact that the sample cylinder must be at room temperature. We present a new method using a gas gun that facilitates experiments on cylinders from 150 K to 800 K with a consistent, repeatable loading. These highly diagnosed experiments are used to examine the effect of temperature on the fracture mechanisms responsible for failure, and their resulting influence on fragmentation statistics. The experimental geometry employs a steel ogive located inside the target cylinder, with the tip located about halfway in. A single stage light gas gun is then used to launch a polycarbonate projectile into the cylinder at 1,000 m/sec(-1). The projectile impacts and flows around the rigid ogive, driving the sample cylinder from the inside. The use of a non-deforming ogive insert allows us to install temperature control hardware inside the rear of the cylinder. Liquid nitrogen (LN2) is used for cooling and a resistive high current load for heating. Multiple channels of upshifted photon Doppler velocimetry (PDV) track the expansion velocity along the cylinder enabling direct comparison to computer simulations, while High speed imaging is used to measure the strain to failure. The recovered cylinder fragments are also subject to optical and electron microscopy to ascertain the failure mechanism.


Assuntos
Teste de Materiais/métodos , Explosões , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa