Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6690, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107309

RESUMO

Circulating cell-free DNA (cfDNA) is emerging as an avenue for cancer detection, but the characteristics of cfDNA fragmentation in the blood are poorly understood. We evaluate the effect of DNA methylation and gene expression on genome-wide cfDNA fragmentation through analysis of 969 individuals. cfDNA fragment ends more frequently contained CCs or CGs, and fragments ending with CGs or CCGs are enriched or depleted, respectively, at methylated CpG positions. Higher levels and larger sizes of cfDNA fragments are associated with CpG methylation and reduced gene expression. These effects are validated in mice with isogenic tumors with or without the mutant IDH1, and are associated with genome-wide changes in cfDNA fragmentation in patients with cancer. Tumor-related hypomethylation and increased gene expression are associated with decrease in cfDNA fragment size that may explain smaller cfDNA fragments in human cancers. These results provide a connection between epigenetic changes and cfDNA fragmentation with implications for disease detection.


Assuntos
Ácidos Nucleicos Livres , Ilhas de CpG , Fragmentação do DNA , Metilação de DNA , Neoplasias , Humanos , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/sangue , Animais , Camundongos , Ilhas de CpG/genética , Neoplasias/genética , Epigênese Genética , Feminino , Isocitrato Desidrogenase/genética , Masculino , Regulação Neoplásica da Expressão Gênica
2.
Cancer Res ; 83(15): 2584-2599, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37249603

RESUMO

Transposable elements (TE) are typically silenced by DNA methylation and repressive histone modifications in differentiated healthy human tissues. However, TE expression increases in a wide range of cancers and is correlated with global hypomethylation of cancer genomes. We assessed expression and DNA methylation of TEs in fibroblast cells that were serially transduced with hTERT, SV40, and HRASR24C to immortalize and then transform them, modeling the different steps of the tumorigenesis process. RNA sequencing and whole-genome bisulfite sequencing were performed at each stage of transformation. TE expression significantly increased as cells progressed through transformation, with the largest increase in expression after the final stage of transformation, consistent with data from human tumors. The upregulated TEs were dominated by endogenous retroviruses [long terminal repeats (LTR)]. Most differentially methylated regions (DMR) in all stages were hypomethylated, with the greatest hypomethylation in the final stage of transformation. A majority of the DMRs overlapped TEs from the RepeatMasker database, indicating that TEs are preferentially demethylated. Many hypomethylated TEs displayed a concordant increase in expression. Demethylation began during immortalization and continued into transformation, while upregulation of TE transcription occurred in transformation. Numerous LTR elements upregulated in the model were also identified in The Cancer Genome Atlas datasets of breast, colon, and prostate cancer. Overall, these findings indicate that TEs, specifically endogenous retroviruses, are demethylated and transcribed during transformation. SIGNIFICANCE: Analysis of epigenetic and transcriptional changes in a transformation model reveals that transposable element expression and methylation are dysregulated during oncogenic transformation.


Assuntos
Metilação de DNA , Neoplasias , Humanos , Elementos de DNA Transponíveis/genética , Ativação Transcricional , Análise de Sequência de RNA , Neoplasias/genética
3.
Cancer Res ; 68(19): 8094-103, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18829568

RESUMO

Much recent effort has focused on identifying and characterizing cellular markers that distinguish tumor propagating cells (TPC) from more differentiated progeny. We report here an unusual promoter DNA methylation pattern for one such marker, the cell surface antigen CD133 (Prominin 1). This protein has been extensively used to enrich putative cancer propagating stem-like cell populations in epithelial tumors and, especially, glioblastomas. We find that, within individual cell lines of cultured colon cancers and glioblastomas, the promoter CpG island of CD133 is DNA methylated, primarily, in cells with absent or low expression of the marker protein, whereas lack of such methylation is evident in purely CD133+ cells. Differential histone modification marks of active versus repressed genes accompany these DNA methylation changes. This heterogeneous CpG island DNA methylation status in the tumors is unusual in that other DNA hypermethylated genes tested in such cultures preserve their methylation patterns between separated CD133+ and CD133- cell populations. Furthermore, the CD133 DNA methylation seems to constitute an abnormal promoter signature because it is not found in normal brain and colon but only in cultured and primary tumors. Thus, the DNA methylation is imposed on the transition between the active versus repressed transcription state for CD133 only in tumors. Our findings provide additional insight for the dynamics of aberrant DNA methylation associated with aberrant gene silencing in human tumors.


Assuntos
Antígenos CD/genética , Neoplasias Encefálicas/genética , Carcinoma/genética , Neoplasias Colorretais/genética , Metilação de DNA , Glioblastoma/genética , Glicoproteínas/genética , Peptídeos/genética , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Antineoplásicos/uso terapêutico , Azacitidina/análogos & derivados , Azacitidina/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Células CACO-2 , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/efeitos dos fármacos , Decitabina , Feminino , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glicoproteínas/metabolismo , Células HCT116 , Células HT29 , Humanos , Camundongos , Camundongos Nus , Peptídeos/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa