Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Cell ; 182(2): 447-462.e14, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32758418

RESUMO

The precise mechanism by which oral infection contributes to the pathogenesis of extra-oral diseases remains unclear. Here, we report that periodontal inflammation exacerbates gut inflammation in vivo. Periodontitis leads to expansion of oral pathobionts, including Klebsiella and Enterobacter species, in the oral cavity. Amassed oral pathobionts are ingested and translocate to the gut, where they activate the inflammasome in colonic mononuclear phagocytes, triggering inflammation. In parallel, periodontitis results in generation of oral pathobiont-reactive Th17 cells in the oral cavity. Oral pathobiont-reactive Th17 cells are imprinted with gut tropism and migrate to the inflamed gut. When in the gut, Th17 cells of oral origin can be activated by translocated oral pathobionts and cause development of colitis, but they are not activated by gut-resident microbes. Thus, oral inflammation, such as periodontitis, exacerbates gut inflammation by supplying the gut with both colitogenic pathobionts and pathogenic T cells.


Assuntos
Colite/patologia , Enterobacter/fisiologia , Microbioma Gastrointestinal , Klebsiella/fisiologia , Boca/microbiologia , Animais , Colite/microbiologia , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Enterobacter/isolamento & purificação , Feminino , Inflamassomos/metabolismo , Interleucina-10/deficiência , Interleucina-10/genética , Interleucina-1beta/metabolismo , Klebsiella/isolamento & purificação , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Periodontite/microbiologia , Periodontite/patologia , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo
2.
Mol Syst Biol ; 20(6): 596-625, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38745106

RESUMO

The erosion of the colonic mucus layer by a dietary fiber-deprived gut microbiota results in heightened susceptibility to an attaching and effacing pathogen, Citrobacter rodentium. Nevertheless, the questions of whether and how specific mucolytic bacteria aid in the increased pathogen susceptibility remain unexplored. Here, we leverage a functionally characterized, 14-member synthetic human microbiota in gnotobiotic mice to deduce which bacteria and functions are responsible for the pathogen susceptibility. Using strain dropouts of mucolytic bacteria from the community, we show that Akkermansia muciniphila renders the host more vulnerable to the mucosal pathogen during fiber deprivation. However, the presence of A. muciniphila reduces pathogen load on a fiber-sufficient diet, highlighting the context-dependent beneficial effects of this mucin specialist. The enhanced pathogen susceptibility is not owing to altered host immune or pathogen responses, but is driven by a combination of increased mucus penetrability and altered activities of A. muciniphila and other community members. Our study provides novel insights into the mechanisms of how discrete functional responses of the same mucolytic bacterium either resist or enhance enteric pathogen susceptibility.


Assuntos
Akkermansia , Citrobacter rodentium , Microbioma Gastrointestinal , Animais , Camundongos , Citrobacter rodentium/patogenicidade , Humanos , Suscetibilidade a Doenças , Fibras na Dieta/metabolismo , Vida Livre de Germes , Dieta , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Verrucomicrobia/genética , Infecções por Enterobacteriaceae/microbiologia , Colo/microbiologia , Camundongos Endogâmicos C57BL
3.
Infect Immun ; 90(2): e0058721, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34871041

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) strains, including the foodborne pathogen E. coli O157:H7, are responsible for thousands of hospitalizations each year. Various environmental triggers can modulate pathogenicity in EHEC by inducing the expression of Shiga toxin (Stx), which is encoded on a lambdoid prophage and transcribed together with phage late genes. Cell-free supernatants of the sequence type 73 (ST73) E. coli strain 0.1229 are potent inducers of Stx2a production in EHEC, suggesting that 0.1229 secretes a factor that activates the SOS response and leads to phage lysis. We previously demonstrated that this factor, designated microcin 1229 (Mcc1229), was proteinaceous and plasmid-encoded. To further characterize Mcc1229 and support its classification as a microcin, we investigated its regulation, determined its receptor, and identified loci providing immunity. The production of Mcc1229 was increased upon iron limitation, as determined by an enzyme-linked immunosorbent assay (ELISA), lacZ fusions, and quantitative real-time PCR (qRT-PCR). Spontaneous Mcc1229-resistant mutants and targeted gene deletion revealed that CirA was the Mcc1229 receptor. TonB, which interacts with CirA in the periplasm, was also essential for Mcc1229 import. Subcloning of the Mcc1229 plasmid indicated that Mcc activity was neutralized by two open reading frames (ORFs), each predicted to encode a domain of unknown function (DUF)-containing protein. In a germfree mouse model of infection, colonization with 0.1229 suppressed subsequent colonization by EHEC. Although Mcc1229 was produced in vivo, it was dispensable for colonization suppression. The regulation, import, and immunity determinants identified here are consistent with features of other Mccs, suggesting that Mcc1229 should be included in this class of small molecules.


Assuntos
Bacteriocinas , Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Escherichia coli O157 , Animais , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli O157/genética , Camundongos , Toxina Shiga/genética , Toxina Shiga/metabolismo
4.
Helicobacter ; 25(6): e12763, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33025641

RESUMO

BACKGROUND: Helicobacter pylori infection leads to regulatory T-cell (Treg) induction in infected mice, which contributes to H. pylori immune escape. However, the mechanisms responsible for H. pylori induction of Treg and immune tolerance remain unclear. We hypothesized DC-produced TGF-ß may be responsible for Treg induction and immune tolerance. MATERIALS AND METHODS: To test this hypothesis, we generated TGF-ß∆DC mice (CD11c+ DC-specific TGF-ß deletion) and assessed the impact of DC-specific TGF-ß deletion on DC function during Helicobacter infection in vitro and in vivo. To examine the T cell-independent DC function, we crossed TGF-ß∆DC mice onto Rag1KO background to generate TGF-ß∆DC xRag1KO mice. RESULTS: When stimulated with H. pylori, TGF-ß∆DC BMDC/splenocyte cocultures showed increased levels of proinflammatory cytokines and decreased levels of anti-inflammatory cytokines compared to control, indicating a proinflammatory DC phenotype. Following 6 months of H. felis infection, TGF-ß∆DC mice developed more severe gastritis and a trend toward more metaplasia compared to TGF-ßfl/fl with increased levels of inflammatory Th1 cytokine mRNA and lower gastric H. felis colonization compared to infected TGF-ßfl/fl mice. In a T cell-deficient background using TGF-ß∆DC xRag1KO mice, H. felis colonization was significantly lower when DC-derived TGF-ß was absent, revealing a direct, innate function of DC in controlling H. felis infection independent of Treg induction. CONCLUSIONS: Our findings indicate that DC-derived TGF-ß mediates Helicobacter-induced Treg response and attenuates the inflammatory Th1 response. We also demonstrated a previously unrecognized innate role of DC controlling Helicobacter colonization via a Treg-independent mechanism. DC TGF-ß signaling may represent an important target in the management of H. pylori.


Assuntos
Células Dendríticas/imunologia , Infecções por Helicobacter/imunologia , Tolerância Imunológica , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Mucosa Gástrica , Helicobacter pylori , Camundongos , Camundongos Endogâmicos C57BL
5.
Infect Immun ; 88(1)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31611275

RESUMO

Catheter-associated urinary tract infections (CAUTIs) are common hospital-acquired infections and frequently polymicrobial, which complicates effective treatment. However, few studies experimentally address the consequences of polymicrobial interactions within the urinary tract, and the clinical significance of polymicrobial bacteriuria is not fully understood. Proteus mirabilis is one of the most common causes of monomicrobial and polymicrobial CAUTI and frequently cocolonizes with Enterococcus faecalis, Escherichia coli, Providencia stuartii, and Morganella morganiiP. mirabilis infections are particularly challenging due to its potent urease enzyme, which facilitates formation of struvite crystals, catheter encrustation, blockage, and formation of urinary stones. We previously determined that interactions between P. mirabilis and other uropathogens can enhance P. mirabilis urease activity, resulting in greater disease severity during experimental polymicrobial infection. Our present work reveals that M. morganii acts on P. mirabilis in a contact-independent manner to decrease urease activity. Furthermore, M. morganii actively prevents urease enhancement by E. faecalis, P. stuartii, and E. coli Importantly, these interactions translate to modulation of disease severity during experimental CAUTI, predominantly through a urease-dependent mechanism. Thus, products secreted by multiple bacterial species in the milieu of the catheterized urinary tract can directly impact prognosis.


Assuntos
Antibiose , Infecções Relacionadas a Cateter/patologia , Coinfecção/patologia , Morganella morganii/crescimento & desenvolvimento , Proteus mirabilis/enzimologia , Urease/metabolismo , Infecções Urinárias/patologia , Animais , Infecções Relacionadas a Cateter/microbiologia , Coinfecção/microbiologia , Modelos Animais de Doenças , Enterococcus faecalis/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Camundongos , Proteus mirabilis/crescimento & desenvolvimento , Providencia/crescimento & desenvolvimento , Infecções Urinárias/microbiologia
6.
Proc Natl Acad Sci U S A ; 113(47): 13468-13473, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821778

RESUMO

Uropathogenic Escherichia coli (UPEC) is the primary cause of uncomplicated urinary tract infections (UTIs). Whereas most infections are isolated cases, 1 in 40 women experience recurrent UTIs. The rise in antibiotic resistance has complicated the management of chronic UTIs and necessitates new preventative strategies. Currently, no UTI vaccines are approved for use in the United States, and the development of a highly effective vaccine remains elusive. Here, we have pursued a strategy for eliciting protective immunity by vaccinating with small molecules required for pathogenesis, rather than proteins or peptides. Small iron-chelating molecules called siderophores were selected as antigens to vaccinate against UTI for this vaccine strategy. These pathogen-associated stealth siderophores evade host immune defenses and enhance bacterial virulence. Previous animal studies revealed that vaccination with siderophore receptor proteins protects against UTI. The poor solubility of these integral outer-membrane proteins in aqueous solutions limits their practical utility. Because their cognate siderophores are water soluble, we hypothesized that these bacterial-derived small molecules are prime vaccine candidates. To test this hypothesis, we immunized mice with siderophores conjugated to an immunogenic carrier protein. The siderophore-protein conjugates elicited an adaptive immune response that targeted bacterial stealth siderophores and protected against UTI. Our study has identified additional antigens suitable for a multicomponent UTI vaccine and highlights the potential use of bacterial-derived small molecules as antigens in vaccine therapies.


Assuntos
Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/prevenção & controle , Sideróforos/imunologia , Infecções Urinárias/imunologia , Infecções Urinárias/prevenção & controle , Escherichia coli Uropatogênica/imunologia , Vacinas Conjugadas/imunologia , Animais , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Feminino , Inflamação/patologia , Camundongos , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia , Vacinação
7.
Infect Immun ; 85(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27895127

RESUMO

Urinary catheter use is prevalent in health care settings, and polymicrobial colonization by urease-positive organisms, such as Proteus mirabilis and Providencia stuartii, commonly occurs with long-term catheterization. We previously demonstrated that coinfection with P. mirabilis and P. stuartii increased overall urease activity in vitro and disease severity in a model of urinary tract infection (UTI). In this study, we expanded these findings to a murine model of catheter-associated UTI (CAUTI), delineated the contribution of enhanced urease activity to coinfection pathogenesis, and screened for enhanced urease activity with other common CAUTI pathogens. In the UTI model, mice coinfected with the two species exhibited higher urine pH values, urolithiasis, bacteremia, and more pronounced tissue damage and inflammation compared to the findings for mice infected with a single species, despite having a similar bacterial burden within the urinary tract. The presence of P. stuartii, regardless of urease production by this organism, was sufficient to enhance P. mirabilis urease activity and increase disease severity, and enhanced urease activity was the predominant factor driving tissue damage and the dissemination of both organisms to the bloodstream during coinfection. These findings were largely recapitulated in the CAUTI model. Other uropathogens also enhanced P. mirabilis urease activity in vitro, including recent clinical isolates of Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, and Pseudomonas aeruginosa We therefore conclude that the underlying mechanism of enhanced urease activity may represent a widespread target for limiting the detrimental consequences of polymicrobial catheter colonization, particularly by P. mirabilis and other urease-positive bacteria.


Assuntos
Coinfecção , Interações Hospedeiro-Patógeno , Proteus mirabilis , Simbiose , Infecções Urinárias/microbiologia , Animais , Bacteriemia/microbiologia , Carga Bacteriana , Modelos Animais de Doenças , Feminino , Genoma Bacteriano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade Inata , Camundongos , Mutação , Proteus mirabilis/classificação , Proteus mirabilis/enzimologia , Proteus mirabilis/genética , Urease/metabolismo , Cateterismo Urinário/efeitos adversos , Infecções Urinárias/patologia , Urolitíase/etiologia
8.
Am J Physiol Gastrointest Liver Physiol ; 312(1): G24-G33, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856416

RESUMO

The bone morphogenetic proteins (BMPs) regulate gastrointestinal homeostasis. We investigated the expression of BMP-4 and the localization and function of BMP signaling during colonic injury and inflammation. Mice expressing the ß-galactosidase (ß-gal) gene under the control of a BMP-responsive element (BRE), BMP-4-ß-gal/ mice, and animals generated by crossing villin-Cre mice to mice with floxed alleles of BMP receptor 1A (villin-Cre;Bmpr1aflox/flox) were treated with dextran sodium sulfate (DSS) to induce colonic injury and inflammation. Expression of BMP-4, ß-gal, BMPR1A, IL-8, α-smooth muscle actin, and phosphorylated Smad1, -5, and -8 was assessed by X-Gal staining, quantitative RT-PCR, and immunohistochemistry. Morphology of the colonic mucosa was examined by staining with hematoxylin and eosin. The effect of IFN-γ, TNF-α, IL-1ß, and IL-6 on BMP-4 mRNA expression was investigated in human intestinal fibroblasts, whereas that of BMP-4 on IL-8 was assessed in human colonic organoids. BMP-4 was localized in α-smooth muscle actin-positive mesenchymal cells while the majority of BMP-generated signals targeted the epithelium. DSS caused injury and inflammation leading to reduced expression of BMP-4 and of BMPR1A mRNAs, and to decreased BMP signaling. Deletion of BMPR1A enhanced colonic inflammation and damage. Administration of anti-TNF-α antibodies to DSS-treated mice ameliorated colonic inflammation and increased the expression of BMP-4 and BMPR1A mRNAs. TNF-α and IL-1ß inhibited both basal and IFN-γ-stimulated BMP-4 expression, whereas IL-6 had no effect. BMP-4 reduced TNF-α-stimulated IL-8 mRNA expressor IL-8 mRNA expression in the organoids. Inflammation and injury inhibit BMP-4 expression and signaling, leading to enhanced colonic damage and inflammation. These observations underscore the importance of BMP signaling in the regulation of intestinal inflammation and homeostasis. NEW & NOTEWORTHY: In this study we report a series of novel observations that underscore the importance of bone morphogenetic protein (BMP) signaling in the regulation of colonic homeostasis during the development of injury and inflammation. In particular, we present evidence that BMP signaling mitigates the response of the colonic epithelium to injury and inflammation and that cytokines, such as TNF-α and IL-1ß, inhibit the expression of BMP-4.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Colo/metabolismo , Inflamação/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteína Morfogenética Óssea 4/genética , Colo/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon-alfa/farmacologia , Interleucina-1beta/farmacologia , Interleucina-6/farmacologia , Interleucina-8/metabolismo , Camundongos , Camundongos Transgênicos , Fator de Necrose Tumoral alfa/farmacologia
9.
Helicobacter ; 22(4)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28436616

RESUMO

BACKGROUND: Helicobacter pylori infection has been consistently associated with lack of access to clean water and proper sanitation, but no studies have demonstrated that the transmission of viable but nonculturable (VBNC) H. pylori can occur from drinking contaminated water. In this study, we used a laboratory mouse model to test whether waterborne VBNCH. pylori could cause gastric infection. MATERIALS AND METHODS: We performed five mouse experiments to assess the infectivity of VBNCH. pylori in various exposure scenarios. VBNC viability was examined using Live/Dead staining and Biolog phenotype metabolism arrays. High doses of VBNCH. pylori in water were chosen to test the "worst-case" scenario for different periods of time. One experiment also investigated the infectious capabilities of VBNC SS1 using gavage. Further, immunocompromised mice were exposed to examine infectivity among potentially vulnerable groups. After exposure, mice were euthanized and their stomachs were examined for H. pylori infection using culture and PCR methodology. RESULTS: VBNC cells were membrane intact and retained metabolic activity. Mice exposed to VBNCH. pylori via drinking water and gavage were not infected, despite the various exposure scenarios (immunocompromised, high doses) that might have permitted infection with VBNCH. pylori. The positive controls exposed to viable, culturable H. pylori did become infected. CONCLUSIONS: While other studies that have used viable, culturable SS1 via gavage or drinking water exposures to successfully infect mice, in our study, waterborne VBNC SS1 failed to colonize mice under all test conditions. Future studies could examine different H. pylori strains in similar exposure scenarios to compare the relative infectivity of the VBNC vs the viable, culturable state, which would help inform future risk assessments of H. pylori in water.


Assuntos
Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/patogenicidade , Microbiologia da Água , Animais , Técnicas Bacteriológicas , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Estômago/microbiologia , Virulência
10.
Gastroenterology ; 149(7): 1849-59, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26261005

RESUMO

BACKGROUND & AIMS: Dual oxidase 2 (DUOX2), a hydrogen-peroxide generator at the apical membrane of gastrointestinal epithelia, is up-regulated in patients with inflammatory bowel disease (IBD) before the onset of inflammation, but little is known about its effects. We investigated the role of DUOX2 in maintaining mucosal immune homeostasis in mice. METHODS: We analyzed the regulation of DUOX2 in intestinal tissues of germ-free vs conventional mice, mice given antibiotics or colonized with only segmented filamentous bacteria, mice associated with human microbiota, and mice with deficiencies in interleukin (IL) 23 and IL22 signaling. We performed 16S ribosomal RNA gene quantitative polymerase chain reaction of intestinal mucosa and mesenteric lymph nodes of Duoxa(-/-) mice that lack functional DUOX enzymes. Genes differentially expressed in Duoxa(-/-) mice compared with co-housed wild-type littermates were correlated with gene expression changes in early-stage IBD using gene set enrichment analysis. RESULTS: Colonization of mice with segmented filamentous bacteria up-regulated intestinal expression of DUOX2. DUOX2 regulated redox signaling within mucosa-associated microbes and restricted bacterial access to lymphatic tissues of the mice, thereby reducing microbiota-induced immune responses. Induction of Duox2 transcription by microbial colonization did not require the mucosal cytokines IL17 or IL22, although IL22 increased expression of Duox2. Dysbiotic, but not healthy human microbiota, activated a DUOX2 response in recipient germ-free mice that corresponded to abnormal colonization of the mucosa with distinct populations of microbes. In Duoxa(-/-) mice, abnormalities in ileal mucosal gene expression at homeostasis recapitulated those in patients with mucosal dysbiosis. CONCLUSIONS: DUOX2 regulates interactions between the intestinal microbiota and the mucosa to maintain immune homeostasis in mice. Mucosal dysbiosis leads to increased expression of DUOX2, which might be a marker of perturbed mucosal homeostasis in patients with early-stage IBD.


Assuntos
Bactérias/patogenicidade , Disbiose , Células Epiteliais/microbiologia , Gastroenterite/microbiologia , Imunidade nas Mucosas , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , NADPH Oxidases/biossíntese , NADPH Oxidases/metabolismo , Infecções por Salmonella/microbiologia , Animais , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/imunologia , Translocação Bacteriana , Modelos Animais de Doenças , Oxidases Duais , Indução Enzimática , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Células Epiteliais/imunologia , Fezes/microbiologia , Feminino , Gastroenterite/enzimologia , Gastroenterite/genética , Gastroenterite/imunologia , Interações Hospedeiro-Patógeno , Humanos , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/imunologia , Interleucinas/deficiência , Interleucinas/genética , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Permeabilidade , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética , Ribotipagem , Infecções por Salmonella/enzimologia , Infecções por Salmonella/genética , Infecções por Salmonella/imunologia , Salmonella typhimurium/patogenicidade , Transdução de Sinais , Técnicas de Cultura de Tecidos , Transcrição Gênica , Interleucina 22
11.
Infect Immun ; 83(11): 4185-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26259815

RESUMO

Escherichia coli O157:H7 is a notorious foodborne pathogen due to its low infectious dose and the disease symptoms it causes, which include bloody diarrhea and severe abdominal cramps. In some cases, the disease progresses to hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS), due to the expression of one or more Shiga toxins (Stx). Isoforms of Stx, including Stx2a, are encoded within temperate prophages. In the presence of certain antibiotics, phage induction occurs, which also increases the expression of toxin genes. Additionally, increased Stx2 accumulation has been reported when O157:H7 was cocultured with phage-susceptible nonpathogenic E. coli. This study characterized an E. coli O157:H7 strain, designated PA2, that belongs to the hypervirulent clade 8 cluster. Stx2a levels after ciprofloxacin induction were lower for PA2 than for the prototypical outbreak strains Sakai and EDL933. However, during coculture with the nonpathogenic strain E. coli C600, PA2 produced Stx2a levels that were 2- to 12-fold higher than those observed during coculture with EDL933 and Sakai, respectively. Germfree mice cocolonized by PA2 and C600 showed greater kidney damage, increased Stx2a accumulation in feces, and more visible signs of disease than mice given PA2 or C600 alone. These data suggest one mechanism by which microorganisms associated with the colonic microbiota could enhance the virulence of E. coli O157:H7, particularly a subset of clade 8 strains.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli O157/metabolismo , Escherichia coli O157/patogenicidade , Escherichia coli/crescimento & desenvolvimento , Toxina Shiga II/biossíntese , Animais , Bovinos , Técnicas de Cocultura , Modelos Animais de Doenças , Escherichia coli O157/genética , Escherichia coli O157/crescimento & desenvolvimento , Feminino , Vida Livre de Germes , Masculino , Camundongos , Virulência
12.
Gastroenterology ; 147(2): 396-406.e7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24751878

RESUMO

BACKGROUND & AIMS: Bone morphogenetic protein (BMP)4 is a mesenchymal peptide that regulates cells of the gastric epithelium. We investigated whether BMP signaling pathways affect gastric inflammation after bacterial infection of mice. METHODS: We studied transgenic mice that express either the BMP inhibitor noggin or the ß- galactosidase gene under the control of a BMP-responsive element and BMP4(ßgal/+) mice. Gastric inflammation was induced by infection of mice with either Helicobacter pylori or Helicobacter felis. Eight to 12 weeks after inoculation, gastric tissue samples were collected and immunohistochemical, quantitative, reverse-transcription polymerase chain reaction and immunoblot analyses were performed. We used enzyme-linked immunosorbent assays to measure cytokine levels in supernatants from cultures of mouse splenocytes and dendritic cells, as well as from human gastric epithelial cells (AGS cell line). We also measured the effects of BMP-2, BMP-4, BMP-7, and the BMP inhibitor LDN-193189 on the expression of interleukin (IL)8 messenger RNA by AGS cells and primary cultures of canine parietal and mucus cells. The effect of BMP-4 on NFkB activation in parietal and AGS cells was examined by immunoblot and luciferase assays. RESULTS: Transgenic expression of noggin in mice increased H pylori- or H felis-induced inflammation and epithelial cell proliferation, accelerated the development of dysplasia, and increased expression of the signal transducer and activator of transcription 3 and activation-induced cytidine deaminase. BMP-4 was expressed in mesenchymal cells that expressed α-smooth muscle actin and activated BMP signaling pathways in the gastric epithelium. Neither BMP-4 expression nor BMP signaling were detected in immune cells of C57BL/6, BRE-ß-galactosidase, or BMP-4(ßgal/+) mice. Incubation of dendritic cells or splenocytes with BMP-4 did not affect lipopolysaccharide-stimulated production of cytokines. BMP-4, BMP-2, and BMP-7 inhibited basal and tumor necrosis factor α-stimulated expression of IL8 in canine gastric epithelial cells. LDN-193189 prevented BMP4-mediated inhibition of basal and tumor necrosis factor α-stimulated expression of IL8 in AGS cells. BMP-4 had no effect on TNFα-stimulated phosphorylation and degradation of IκBα, or on TNFα induction of a NFκß reporter gene. CONCLUSIONS: BMP signaling reduces inflammation and inhibits dysplastic changes in the gastric mucosa after infection of mice with H pylori or H felis.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Mucosa Gástrica/metabolismo , Gastrite/prevenção & controle , Transdução de Sinais , Animais , Sítios de Ligação , Proteína Morfogenética Óssea 4/deficiência , Proteína Morfogenética Óssea 4/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Cães , Feminino , Gastrite/genética , Gastrite/imunologia , Gastrite/metabolismo , Gastrite/microbiologia , Gastrite/patologia , Regulação da Expressão Gênica , Genes Reporter , Helicobacter felis/patogenicidade , Helicobacter pylori/patogenicidade , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Estômago/imunologia , Estômago/microbiologia , Estômago/patologia , Fatores de Tempo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
13.
PLoS Pathog ; 9(3): e1003236, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555250

RESUMO

Enterohemorrhagic Escherichia coli (EHEC), particularly serotype O157:H7, causes hemorrhagic colitis, hemolytic uremic syndrome, and even death. In vitro studies showed that Shiga toxin 2 (Stx2), the primary virulence factor expressed by EDL933 (an O157:H7 strain), is encoded by the 933W prophage. And the bacterial subpopulation in which the 933W prophage is induced is the producer of Stx2. Using the germ-free mouse, we show the essential role 933W induction plays in the virulence of EDL933 infection. An EDL933 derivative with a single mutation in its 933W prophage, resulting specifically in that phage being uninducible, colonizes the intestines, but fails to cause any of the pathological changes seen with the parent strain. Hence, induction of the 933W prophage is the primary event leading to disease from EDL933 infection. We constructed a derivative of EDL933, SIVET, with a biosensor that specifically measures induction of the 933W prophage. Using this biosensor to measure 933W induction in germ-free mice, we found an increase three logs greater than was expected from in vitro results. Since the induced population produces and releases Stx2, this result indicates that an activity in the intestine increases Stx2 production.


Assuntos
Escherichia coli Êntero-Hemorrágica/metabolismo , Síndrome Hemolítico-Urêmica/metabolismo , Nefropatias/metabolismo , Ativação Viral/fisiologia , Animais , Modelos Animais de Doenças , Escherichia coli Êntero-Hemorrágica/virologia , Feminino , Síndrome Hemolítico-Urêmica/mortalidade , Síndrome Hemolítico-Urêmica/virologia , Nefropatias/mortalidade , Nefropatias/virologia , Longevidade , Masculino , Camundongos , Toxina Shiga II/metabolismo , Organismos Livres de Patógenos Específicos , Taxa de Sobrevida , Urinálise
14.
Helicobacter ; 20(5): 326-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25664781

RESUMO

BACKGROUND: Helicobacter pylori infection has been consistently associated with lack of access to clean water and proper sanitation, but no studies have demonstrated that the transmission of H. pylori can occur from drinking contaminated water. In this study, we used a laboratory mouse model to test whether waterborne H. pylori could cause gastric infection. MATERIALS AND METHODS: Groups of immunocompetent C57/BL6 Helicobacter-free mice were exposed to static concentrations (1.29 × 10(5), 10(6), 10(7), 10(8), and 10(9) CFU/L) of H. pylori in their drinking water for 4 weeks. One group of Helicobacter-free mice was exposed to uncontaminated water as a negative control. H. pylori morphology changes in water were examined using microscopy Live/Dead staining. Following exposure, H. pylori infection and inflammation status in the stomach were evaluated using quantitative culture, PCR, the rapid urease test, and histology. RESULTS: None of the mice in the negative control or 10(5) groups were infected. One of 20 cages (one of 40 mice) of the 10(6) group, three of 19 cages (four of 38 mice) of the 10(7) CFU/L group, 19 of 20 cages (33 of 40 mice) of the 10(8) group, and 20 of 20 cages (39 of 40 mice) of the 10(9) CFU/L group were infected. Infected mice had significantly higher gastric inflammation than uninfected mice (27.86% higher inflammation, p < .0001). CONCLUSIONS: We offer proof that H. pylori in water is infectious in mice, suggesting that humans drinking contaminated water may be at risk of contracting H. pylori infection. Much work needs to be performed to better understand the risk of infection from drinking H. pylori-contaminated water.


Assuntos
Transmissão de Doença Infecciosa , Água Potável/microbiologia , Infecções por Helicobacter/transmissão , Helicobacter pylori/isolamento & purificação , Animais , Carga Bacteriana , Modelos Animais de Doenças , Helicobacter pylori/citologia , Helicobacter pylori/fisiologia , Histocitoquímica , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Microscopia , Coloração e Rotulagem/métodos , Estômago/microbiologia , Estômago/patologia
15.
Gastroenterology ; 144(5): 989-1000.e6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23336977

RESUMO

BACKGROUND & AIMS: Endoplasmic reticulum (ER) stress has been associated with development of inflammatory bowel disease. We examined the effects of ER stress-induced chaperone response and the orally active chemical chaperones tauroursodeoxycholate (TUDCA) and 4-phenylbutyrate (PBA), which facilitate protein folding and reduce ER stress, in mice with colitis. METHODS: We used dextran sulfate sodium (DSS) to induce colitis in mice that do not express the transcription factor ATF6α or the protein chaperone P58(IPK). We examined the effects of TUDCA and PBA in cultured intestinal epithelial cells (IECs); in wild-type, P58(IPK-/-), and Atf6α(-/-) mice with colitis; and in Il10(-/-) mice. RESULTS: P58(IPK-/-) and Atf6α(-/-) mice developed more severe colitis following administration of DSS than wild-type mice. IECs from P58(IPK-/-) mice had excessive ER stress, and apoptotic signaling was activated in IECs from Atf6α(-/-) mice. Inflammatory stimuli induced ER stress signals in cultured IECs, which were reduced by incubation with TUDCA or PBA. Oral administration of either PBA or TUDCA reduced features of DSS-induced acute and chronic colitis in wild-type mice, the colitis that develops in Il10(-/-) mice, and DSS-induced colitis in P58(IPK-/-) and Atf6α(-/-) mice. Reduced signs of colonic inflammation in these mice were associated with significantly decreased ER stress in colonic epithelial cells. CONCLUSIONS: The unfolded protein response induces expression of genes that encode chaperones involved in ER protein folding; these factors prevent induction of colitis in mice. Chemical chaperones such as TUDCA and PBA alleviate different forms of colitis in mice and might be developed for treatment of inflammatory bowel diseases.


Assuntos
Colite/genética , Colo/metabolismo , DNA/genética , Regulação da Expressão Gênica , Chaperonas Moleculares/genética , Dobramento de Proteína , Resposta a Proteínas não Dobradas/genética , Animais , Apoptose/genética , Células Cultivadas , Colite/metabolismo , Colite/patologia , Colo/patologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Transdução de Sinais/genética
16.
Cell Host Microbe ; 32(4): 527-542.e9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38513656

RESUMO

Inflammatory bowel diseases (IBDs) are chronic conditions characterized by periods of spontaneous intestinal inflammation and are increasing in industrialized populations. Combined with host genetics, diet and gut bacteria are thought to contribute prominently to IBDs, but mechanisms are still emerging. In mice lacking the IBD-associated cytokine, interleukin-10, we show that a fiber-deprived gut microbiota promotes the deterioration of colonic mucus, leading to lethal colitis. Inflammation starts with the expansion of natural killer cells and altered immunoglobulin-A coating of some bacteria. Lethal colitis is then driven by Th1 immune responses to increased activities of mucin-degrading bacteria that cause inflammation first in regions with thinner mucus. A fiber-free exclusive enteral nutrition diet also induces mucus erosion but inhibits inflammation by simultaneously increasing an anti-inflammatory bacterial metabolite, isobutyrate. Our findings underscore the importance of focusing on microbial functions-not taxa-contributing to IBDs and that some diet-mediated functions can oppose those that promote disease.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Microbiota , Camundongos , Animais , Doenças Inflamatórias Intestinais/microbiologia , Colite/microbiologia , Inflamação , Dieta , Predisposição Genética para Doença , Bactérias
17.
Infect Immun ; 81(3): 740-52, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23264048

RESUMO

Disease due to the gastric pathogen Helicobacter pylori varies in severity from asymptomatic to peptic ulcer disease and cancer. Accumulating evidence suggests that one source of this variation is an abnormal host response. The goal of this study was to use a mouse model of H. pylori gastritis to investigate the roles of regulatory T cells (Treg) as well as proinflammatory T cells (Th1 and Th17) in gastritis, gastric T cell engraftment, and gastric cytokine production. Our results support published data indicating that severe gastritis in T cell recipient mice is due to failure of Treg engraftment, that Treg ameliorate gastritis, and that the proinflammatory response is attributable to interactions between several cell subsets and cytokines. We confirmed that gamma interferon (IFN-γ) is essential for induction of gastritis but showed that IFN-γ-producing CD4 T cells are not necessary. Interleukin 17A (IL-17A) also contributed to gastritis, but to a lesser extent than IFN-γ. Tumor necrosis factor alpha (TNF-α) and IL-17F were also elevated in association with disease. These results indicate that while H. pylori-specific CD4(+) T cells and IFN-γ are both essential for induction of gastritis due to H. pylori, IFN-γ production by T cells is not essential. It is likely that other proinflammatory cytokines, such as IL-17F and TNF-α, shown to be elevated in this model, also contribute to the induction of disease. We suggest that gastritis due to H. pylori is associated with loss of immunoregulation and alteration of several cytokines and cell subsets and cannot be attributed to a single immune pathway.


Assuntos
Gastrite/microbiologia , Infecções por Helicobacter/imunologia , Helicobacter pylori , Subpopulações de Linfócitos T/fisiologia , Transferência Adotiva , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Gastrite/imunologia , Regulação da Expressão Gênica/fisiologia , Infecções por Helicobacter/microbiologia , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID
18.
Am J Pathol ; 181(6): 2114-25, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23036899

RESUMO

Gastric adenocarcinoma is one of the leading causes of cancer mortality worldwide. It arises through a stepwise process that includes prominent inflammation with expression of interferon-γ (IFN-γ) and multiple other pro-inflammatory cytokines. We engineered mice expressing IFN-γ under the control of the stomach-specific H(+)/K(+) ATPase ß promoter to test the potential role of this cytokine in gastric tumorigenesis. Stomachs of H/K-IFN-γ transgenic mice exhibited inflammation, expansion of myofibroblasts, loss of parietal and chief cells, spasmolytic polypeptide expressing metaplasia, and dysplasia. Proliferation was elevated in undifferentiated and metaplastic epithelial cells in H/K-IFN-γ transgenic mice, and there was increased apoptosis. H/K-IFN-γ mice had elevated levels of mRNA for IFN-γ target genes and the pro-inflammatory cytokines IL-6, IL-1ß, and tumor necrosis factor-α. Intracellular mediators of IFN-γ and IL-6 signaling, pSTAT1 and pSTAT3, respectively, were detected in multiple cell types within stomach. H/K-IFN-γ mice developed dysplasia as early as 3 months of age, and 4 of 39 mice over 1 year of age developed antral polyps or tumors, including one adenoma and one adenocarcinoma, which expressed high levels of nuclear ß-catenin. Our data identified IFN-γ as a pivotal secreted factor that orchestrates complex changes in inflammatory, epithelial, and mesenchymal cell populations to drive pre-neoplastic progression in stomach; however, additional alterations appear to be required for malignant conversion.


Assuntos
Mucosa Gástrica/metabolismo , Inflamação/patologia , Interferon gama/genética , Estômago/patologia , Animais , Apoptose/genética , Atrofia , Linhagem da Célula/genética , Proliferação de Células , Progressão da Doença , Feminino , ATPase Trocadora de Hidrogênio-Potássio/genética , Proteínas Hedgehog/metabolismo , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intercelular , Interferon gama/metabolismo , Masculino , Metaplasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamanho do Órgão , Células Parietais Gástricas/metabolismo , Células Parietais Gástricas/patologia , Peptídeos/metabolismo , Lesões Pré-Cancerosas/patologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Regulação para Cima/genética
19.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168188

RESUMO

The erosion of the colonic mucus layer by a dietary fiber-deprived gut microbiota results in heightened susceptibility to an attaching and effacing pathogen, Citrobacter rodentium. Nevertheless, the questions of whether and how specific mucolytic bacteria aid in the increased pathogen susceptibility remain unexplored. Here, we leverage a functionally characterized, 14-member synthetic human microbiota in gnotobiotic mice to deduce which bacteria and functions are responsible for the pathogen susceptibility. Using strain dropouts of mucolytic bacteria from the community, we show that Akkermansia muciniphila renders the host more vulnerable to the mucosal pathogen during fiber deprivation. However, the presence of A. muciniphila reduces pathogen load on a fiber-sufficient diet, highlighting the context-dependent beneficial effects of this mucin specialist. The enhanced pathogen susceptibility is not owing to altered host immune or pathogen responses, but is driven by a combination of increased mucus penetrability and altered activities of A. muciniphila and other community members. Our study provides novel insights into the mechanisms of how discrete functional responses of the same mucolytic bacterium either resist or enhance enteric pathogen susceptibility.

20.
J Nutr Biochem ; 112: 109215, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36370930

RESUMO

Sulforaphane is a bioactive metabolite with anti-inflammatory activity and is derived from the glucosinolate glucoraphanin, which is highly abundant in broccoli sprouts. However, due to its inherent instability its use as a therapeutic against inflammatory diseases has been limited. There are few studies to investigate a whole food approach to increase sulforaphane levels with therapeutic effect and reduce inflammation. In the current study, using a mouse model of inflammatory bowel disease, we investigated the ability of steamed broccoli sprouts to ameliorate colitis and the role of the gut microbiota in mediating any effects. We observed that despite inactivation of the plant myrosinase enzyme responsible for the generation of sulforaphane via steaming, measurable levels of sulforaphane were detectable in the colon tissue and feces of mice after ingestion of steamed broccoli sprouts. In addition, this preparation of broccoli sprouts was also capable of reducing chemically-induced colitis. This protective effect was dependent on the presence of an intact microbiota, highlighting an important role for the gut microbiota in the metabolism of cruciferous vegetables to generate bioactive metabolites and promote their anti-inflammatory effects.


Assuntos
Brassica , Colite , Microbioma Gastrointestinal , Isotiocianatos/farmacologia , Dieta , Brassica/metabolismo , Colite/induzido quimicamente , Colite/prevenção & controle , Glucosinolatos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa