Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 51(17): 7427-7508, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35920324

RESUMO

Fluorinated metal-organic frameworks (F-MOFs) as fast-growing porous materials have revolutionized the field of gas separation due to their tunable pore apertures, appealing chemical features, and excellent stability. A deep understanding of their structure-performance relationships is critical for the synthesis and development of new F-MOFs. This critical review has focused on several strategies for the precise design and synthesis of new F-MOFs with structures tuned for specific gas separation purposes. First, the basic principles and concepts of F-MOFs as well as their structure, synthesis and modification and their structure to property relationships are studied. Then, applications of F-MOFs in adsorption and membrane gas separation are discussed. A detailed account of the design and capabilities of F-MOFs for the adsorption of various gases and the governing principles is provided. In addition, the exceptional characteristics of highly stable F-MOFs with engineered pore size and tuned structures are put into perspective to fabricate selective membranes for gas separation. Systematic analysis of the position of F-MOFs in gas separation revealed that F-MOFs are benchmark materials in most of the challenging gas separations. The outlook and future directions of the science and engineering of F-MOFs and their challenges are highlighted to tackle the issues of overcoming the trade-off between capacity/permeability and selectivity for a serious move towards industrialization.

2.
ACS Appl Mater Interfaces ; 9(11): 10094-10105, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28225597

RESUMO

In this research, Pebax1657 as an organic phase and silver nanoparticles as an inorganic phase were used for preparation of binary mixed matrix membranes (MMMs). Silver nanoparticles as a filler could enter the polymer chains and enhance the gas permeability by increasing the fractional free volume of membranes. Afterward, ternary MMMs were fabricated by addition of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) ionic liquid, in order to have better polymer/filler adhesion and eliminate interfacial defects and nonselective voids. In addition, positively polarized silver nanoparticles in the presence of the IL could interact with PEO segment of the polymer and increase the CO2 affinity of membranes, which results in increasing the CO2/light gases permselectivity of MMMs. Gas permeation properties of MMMs were studied at a temperature of 35 °C and operating pressures from 2 to 10 bar. Moreover, fabricated membranes were characterized by fourier transform infrared-attenuated total reflectance (FTIR-ATR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimeter (DSC). The analysis revealed that there is a proper adhesion between positively charged surface of nanoparticles and the polymer, and both filler and IL decrease the crystallinity of the membranes, which could enhance the polar gas transport properties. Gas permeation results showed significant enhancement in CO2 permeability (325 Barrer) for binary membrane (Pebax 1657/1%Ag) at 35 °C and 10 bar. Moreover, ternary MMM (Pebax 1657/0.5%Ag/50%IL) encountered significant increase in both permeability and selectivity in comparison with neat membrane. Indeed, the CO2 permeability increased from 110 Barrer to 180 (about 64%). Moreover, the related CO2/CH4 and CO2/N2 selectivities were increased from 20.8 to 61.0 (more than 193%) and from 78.6 to 187.5 (about 139%), respectively.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa