Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202401850, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853595

RESUMO

Molecular building blocks, capable of adopting several strongly deviating conformations, are of particular interest in the development of stimuli-responsive self-assemblies. The pronounced structural flexibility of a short acridone-based bridging ligand, equipped with two monodentate isoquinoline donors, is herein exploited to assemble a surprisingly diverse series of coordination-driven Pd(II) architectures. First, it can form a highly twisted Pd2L4 helicate, transformable into the corresponding mesocate, controlled by temperature, counter anion and choice of solvent. Second, it also allows the formation of heteroleptic cages, either from a mix of ligands with Pd(II) cations or by cage-to-cage transformation from homoleptic assemblies. Here, the acridone-based ligand tolerates counter ligands that carry their donors either in a diverging or converging arrangement, as it can rotate its own coordination sites by 90° and structurally adapt to both situations via shape complementarity. Third, by a near 180° rotation of only one of its arms, the ligand can adopt an S-shape conformation and form an unprecedented C6h-symmetric Pd6L12 saw-toothed six-membered ring.

2.
Angew Chem Int Ed Engl ; 61(24): e202201823, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35348279

RESUMO

Thirteen palladium-ligand assemblies with different structures and topologies were investigated for the ability to bind lithium ions. In one case, the addition of LiBF4 resulted in a profound structural rearrangement, converting a dincluclear [Pd2 L4 ]4+ complex into a low-symmetry [Pd4 L8 ]8+ assembly with two binding pockets for solvated LiBF4 ion pairs. The rearrangement could only be induced by Li+ , indicating highly specific host-guest interactions. A structural analysis of the [Pd4 L8 ]8+ receptor revealed a compact structure with multiple intramolecular interactions, reminiscent of what is seen for natural and synthetic foldamers.

3.
Angew Chem Int Ed Engl ; 61(47): e202209305, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36074340

RESUMO

Metallosupramolecular hosts of nanoscopic dimensions, which are able to serve as selective receptors and catalysts, are usually composed of only one type of organic ligand, restricting diversity in terms of cavity shape and functional group decoration. We report a series of heteroleptic [Pd2 A2 B2 ] coordination cages that self-assemble from a library of shape complementary bis-monodentate ligands in a non-statistical fashion. Ligands A feature an inward pointing NH function, able to engage in hydrogen bonding and amenable to being functionalized with amide and alkyl substituents. Ligands B comprise tricyclic aromatic backbones of different shape and electronic situation. The obtained heteroleptic coordination cages were investigated for their ability to bind phosphate diesters as guests. All-atom molecular dynamics (MD) simulations in explicit solvent were conducted to understand the mechanistic relationships behind the experimentally determined guest affinities.


Assuntos
Ésteres , Fosfatos , Modelos Moleculares , Ligantes , Ligação de Hidrogênio
4.
Dalton Trans ; 48(29): 11070-11075, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31251313

RESUMO

We report a complex system of heteroleptic coordination cages based on the combination of four bis-monodentate ligands whose backbones only slightly differ in shape and length. cis-[Pd2L2L'2] assemblies cleanly form after addition of PdII cations to a 1 : 1 mixture of two shape-complementary ligands, each. When three or even all four ligands are used in combination, the unambiguous discrimination of all individual species in the product mixture becomes difficult by conventional NMR spectroscopic and mass spectrometric methods. Due to steric constraints, the system is restricted to the formation of ten different coordination cages in total, two of which are isomeric. We show that high-resolution trapped ion mobility mass spectrometry (TIMS) allows the clear differentiation of all ten species. Observed size trends could be readily reproduced by the calculation of theoretical values for collisional cross sections (CCS) from geometry-optimized models.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa