Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Res ; 30(7): 1758-67, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23579480

RESUMO

PURPOSE: This work describes a method for functionalisation of nanoparticle surfaces with hydrophilic "nano-shields" and the application of advanced surface characterisation to determine PEG amount and accumulation at the outmost 10 nm surface that is the predominant factor in determining protein and cellular interactions. METHODS: Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were prepared with a hydrophilic PEGylated "nano-shield" inserted at different levels by hydrophobic anchoring using either a phospholipid-PEG conjugate or the copolymer PLGA-block-PEG by an emulsification/diffusion method. Surface and bulk analysis was performed including X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance spectroscopy (NMR) and zeta potential. Cellular uptake was investigated in RAW 264.7 macrophages by flow cytometry. RESULTS: Sub-micron nanoparticles were formed and the combination of (NMR) and XPS revealed increasing PEG levels at the particle surface at higher PLGA-b-PEG copolymer levels. Reduced cellular interaction with RAW 264.7 cells was demonstrated that correlated with greater surface presentation of PEG. CONCLUSION: This work demonstrates a versatile procedure for decorating nanoparticle surfaces with hydrophilic "nano-shields". XPS in combination with NMR enabled precise determination of PEG at the outmost surface to predict and optimize the biological performance of nanoparticle-based drug delivery.


Assuntos
Nanopartículas/química , Polietilenoglicóis/química , Poliglactina 910/química , Animais , Linhagem Celular , Sobrevivência Celular , Interações Hidrofóbicas e Hidrofílicas , Ácido Láctico/química , Ácido Láctico/metabolismo , Camundongos , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Polietilenoglicóis/metabolismo , Poliglactina 910/metabolismo , Ácido Poliglicólico/química , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície
2.
Int J Biochem Cell Biol ; 142: 106121, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808373

RESUMO

SSX proteins are normally restricted to spermatogenic cells, but ectopic expression can be observed in many types of human cancer. We recently demonstrated that SSX family members may contribute to tumorigenesis by modifying chromatin structure and, in specific settings, compromise chromatin stability. Here, we used normal and tumorigenic breast epithelial cell line models to further study the effect of ectopic expression of SSX2 on nuclear organization. We show that SSX2 induces the formation of a novel type of nucleoplasmic lamin bodies. Ectopic expression of SSX2 in various breast epithelial cell lines led to the formation of a previously undescribed type of intranuclear bodies containing both A and B type lamins but no other components of the nuclear lamina. SSX2-expressing cells contained a highly variable number of lamin bodies distributed throughout the nuclear space. SSX2-mediated establishment of intranuclear lamin bodies could not be linked to previous molecular interactions of SSX proteins, including polycomb proteins and the Mediator complex, but was, however, dependent on S-phase progression. These results reveal a novel interaction between SSX2 and lamins in the nucleoplasmic space. They further suggest that SSX2 promotes the formation of chromatin neighborhoods supporting the organization of lamins into nuclear bodies. We speculate that this may have implications for the organization and functional regulation of chromatin in cancer cells. Our study contributes to the further understanding of the biology of SSX proteins in tumorigenesis.


Assuntos
Corpos Nucleares
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa