Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Cell ; 169(7): 1240-1248.e23, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622509

RESUMO

Drug-resistant bacterial pathogens pose an urgent public-health crisis. Here, we report the discovery, from microbial-extract screening, of a nucleoside-analog inhibitor that inhibits bacterial RNA polymerase (RNAP) and exhibits antibacterial activity against drug-resistant bacterial pathogens: pseudouridimycin (PUM). PUM is a natural product comprising a formamidinylated, N-hydroxylated Gly-Gln dipeptide conjugated to 6'-amino-pseudouridine. PUM potently and selectively inhibits bacterial RNAP in vitro, inhibits bacterial growth in culture, and clears infection in a mouse model of Streptococcus pyogenes peritonitis. PUM inhibits RNAP through a binding site on RNAP (the NTP addition site) and mechanism (competition with UTP for occupancy of the NTP addition site) that differ from those of the RNAP inhibitor and current antibacterial drug rifampin (Rif). PUM exhibits additive antibacterial activity when co-administered with Rif, exhibits no cross-resistance with Rif, and exhibits a spontaneous resistance rate an order-of-magnitude lower than that of Rif. PUM is a highly promising lead for antibacterial therapy.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Streptomyces/química , Animais , Antibacterianos/química , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , RNA Polimerases Dirigidas por DNA/química , Farmacorresistência Bacteriana , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos ICR , Microbiologia do Solo , Infecções Estreptocócicas/tratamento farmacológico , Streptococcus pyogenes/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
2.
Nature ; 614(7947): 367-374, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697824

RESUMO

Rho is a ring-shaped hexameric ATP-dependent molecular motor. Together with the transcription elongation factor NusG, Rho mediates factor-dependent transcription termination and transcription-translation-coupling quality control in Escherichia coli1-4. Here we report the preparation of complexes that are functional in factor-dependent transcription termination from Rho, NusG, RNA polymerase (RNAP), and synthetic nucleic acid scaffolds, and we report cryogenic electron microscopy structures of the complexes. The structures show that functional factor-dependent pre-termination complexes contain a closed-ring Rho hexamer; have RNA threaded through the central channel of Rho; have 60 nucleotides of RNA interacting sequence-specifically with the exterior of Rho and 6 nucleotides of RNA interacting sequence-specifically with the central channel of Rho; have Rho oriented relative to RNAP such that ATP-dependent translocation by Rho exerts mechanical force on RNAP; and have NusG bridging Rho and RNAP. The results explain five decades of research on Rho and provide a foundation for understanding Rho's function.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Fatores de Transcrição , Terminação da Transcrição Genética , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , RNA/química , RNA/genética , RNA/metabolismo , RNA/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura
3.
Mol Cell ; 79(5): 797-811.e8, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32750314

RESUMO

Pausing by RNA polymerase (RNAP) during transcription elongation, in which a translocating RNAP uses a "stepping" mechanism, has been studied extensively, but pausing by RNAP during initial transcription, in which a promoter-anchored RNAP uses a "scrunching" mechanism, has not. We report a method that directly defines the RNAP-active-center position relative to DNA with single-nucleotide resolution (XACT-seq; "crosslink-between-active-center-and-template sequencing"). We apply this method to detect and quantify pausing in initial transcription at 411 (∼4,000,000) promoter sequences in vivo in Escherichia coli. The results show initial-transcription pausing can occur in each nucleotide addition during initial transcription, particularly the first 4 to 5 nucleotide additions. The results further show initial-transcription pausing occurs at sequences that resemble the consensus sequence element for transcription-elongation pausing. Our findings define the positional and sequence determinants for initial-transcription pausing and establish initial-transcription pausing is hard coded by sequence elements similar to those for transcription-elongation pausing.


Assuntos
DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas , Análise de Sequência de DNA/métodos , Domínio Catalítico , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica
4.
Mol Cell ; 70(3): 553-564.e9, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681497

RESUMO

Nucleoside-containing metabolites such as NAD+ can be incorporated as 5' caps on RNA by serving as non-canonical initiating nucleotides (NCINs) for transcription initiation by RNA polymerase (RNAP). Here, we report CapZyme-seq, a high-throughput-sequencing method that employs NCIN-decapping enzymes NudC and Rai1 to detect and quantify NCIN-capped RNA. By combining CapZyme-seq with multiplexed transcriptomics, we determine efficiencies of NAD+ capping by Escherichia coli RNAP for ∼16,000 promoter sequences. The results define preferred transcription start site (TSS) positions for NAD+ capping and define a consensus promoter sequence for NAD+ capping: HRRASWW (TSS underlined). By applying CapZyme-seq to E. coli total cellular RNA, we establish that sequence determinants for NCIN capping in vivo match the NAD+-capping consensus defined in vitro, and we identify and quantify NCIN-capped small RNAs (sRNAs). Our findings define the promoter-sequence determinants for NCIN capping with NAD+ and provide a general method for analysis of NCIN capping in vitro and in vivo.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , NAD/metabolismo , Regiões Promotoras Genéticas/genética , Capuzes de RNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica/genética , Nucleotídeos/genética , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética , Transcriptoma/genética
5.
Mol Cell ; 70(1): 60-71.e15, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29606590

RESUMO

Fidaxomicin is an antibacterial drug in clinical use for treatment of Clostridium difficile diarrhea. The active ingredient of fidaxomicin, lipiarmycin A3 (Lpm), functions by inhibiting bacterial RNA polymerase (RNAP). Here we report a cryo-EM structure of Mycobacterium tuberculosis RNAP holoenzyme in complex with Lpm at 3.5-Å resolution. The structure shows that Lpm binds at the base of the RNAP "clamp." The structure exhibits an open conformation of the RNAP clamp, suggesting that Lpm traps an open-clamp state. Single-molecule fluorescence resonance energy transfer experiments confirm that Lpm traps an open-clamp state and define effects of Lpm on clamp dynamics. We suggest that Lpm inhibits transcription by trapping an open-clamp state, preventing simultaneous interaction with promoter -10 and -35 elements. The results account for the absence of cross-resistance between Lpm and other RNAP inhibitors, account for structure-activity relationships of Lpm derivatives, and enable structure-based design of improved Lpm derivatives.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Fidaxomicina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Desenho de Fármacos , Farmacorresistência Bacteriana/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/ultraestrutura , Fidaxomicina/química , Fidaxomicina/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Modelos Moleculares , Mutação , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestrutura , Ligação Proteica , Conformação Proteica , Imagem Individual de Molécula , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Relação Estrutura-Atividade
6.
Mol Cell ; 66(2): 169-179.e8, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28392175

RESUMO

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, which kills 1.8 million annually. Mtb RNA polymerase (RNAP) is the target of the first-line antituberculosis drug rifampin (Rif). We report crystal structures of Mtb RNAP, alone and in complex with Rif, at 3.8-4.4 Å resolution. The results identify an Mtb-specific structural module of Mtb RNAP and establish that Rif functions by a steric-occlusion mechanism that prevents extension of RNA. We also report non-Rif-related compounds-Nα-aroyl-N-aryl-phenylalaninamides (AAPs)-that potently and selectively inhibit Mtb RNAP and Mtb growth, and we report crystal structures of Mtb RNAP in complex with AAPs. AAPs bind to a different site on Mtb RNAP than Rif, exhibit no cross-resistance with Rif, function additively when co-administered with Rif, and suppress resistance emergence when co-administered with Rif.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Transcrição Gênica , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , Farmacorresistência Bacteriana , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Rifampina/metabolismo , Rifampina/farmacologia , Relação Estrutura-Atividade , Transcrição Gênica/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 119(33): e2205278119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35951650

RESUMO

Lambdoid bacteriophage Q proteins are transcription antipausing and antitermination factors that enable RNA polymerase (RNAP) to read through pause and termination sites. Q proteins load onto RNAP engaged in promoter-proximal pausing at a Q binding element (QBE) and adjacent sigma-dependent pause element to yield a Q-loading complex, and they translocate with RNAP as a pausing-deficient, termination-deficient Q-loaded complex. In previous work, we showed that the Q protein of bacteriophage 21 (Q21) functions by forming a nozzle that narrows and extends the RNAP RNA-exit channel, preventing formation of pause and termination RNA hairpins. Here, we report atomic structures of four states on the pathway of antitermination by the Q protein of bacteriophage λ (Qλ), a Q protein that shows no sequence similarity to Q21 and that, unlike Q21, requires the transcription elongation factor NusA for efficient antipausing and antitermination. We report structures of Qλ, the Qλ-QBE complex, the NusA-free pre-engaged Qλ-loading complex, and the NusA-containing engaged Qλ-loading complex. The results show that Qλ, like Q21, forms a nozzle that narrows and extends the RNAP RNA-exit channel, preventing formation of RNA hairpins. However, the results show that Qλ has no three-dimensional structural similarity to Q21, employs a different mechanism of QBE recognition than Q21, and employs a more complex process for loading onto RNAP than Q21, involving recruitment of Qλ to form a pre-engaged loading complex, followed by NusA-facilitated refolding of Qλ to form an engaged loading complex. The results establish that Qλ and Q21 are not structural homologs and are solely functional analogs.


Assuntos
Bacteriófago lambda , Proteínas de Escherichia coli , Redobramento de Proteína , Terminação da Transcrição Genética , Fatores de Elongação da Transcrição , Proteínas Virais , Bacteriófago lambda/genética , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Conformação Proteica , Fatores de Elongação da Transcrição/química , Proteínas Virais/química
8.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082149

RESUMO

Reiterative transcription initiation, observed at promoters that contain homopolymeric sequences at the transcription start site, generates RNA products having 5' sequences noncomplementary to the DNA template. Here, using crystallography and cryoelectron microscopy to define structures, protein-DNA photocrosslinking to map positions of RNAP leading and trailing edges relative to DNA, and single-molecule DNA nanomanipulation to assess RNA polymerase (RNAP)-dependent DNA unwinding, we show that RNA extension in reiterative transcription initiation 1) occurs without DNA scrunching; 2) involves a short, 2- to 3-bp, RNA-DNA hybrid; and 3) generates RNA that exits RNAP through the portal by which scrunched nontemplate-strand DNA exits RNAP in standard transcription initiation. The results establish that, whereas RNA extension in standard transcription initiation proceeds through a scrunching mechanism, RNA extension in reiterative transcription initiation proceeds through a slippage mechanism, with slipping of RNA relative to DNA within a short RNA-DNA hybrid, and with extrusion of RNA from RNAP through an alternative RNA exit.


Assuntos
Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética , DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Regiões Promotoras Genéticas/genética , RNA/genética
9.
Proc Natl Acad Sci U S A ; 119(23): e2201301119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653571

RESUMO

In σ-dependent transcriptional pausing, the transcription initiation factor σ, translocating with RNA polymerase (RNAP), makes sequence-specific protein­DNA interactions with a promoter-like sequence element in the transcribed region, inducing pausing. It has been proposed that, in σ-dependent pausing, the RNAP active center can access off-pathway "backtracked" states that are substrates for the transcript-cleavage factors of the Gre family and on-pathway "scrunched" states that mediate pause escape. Here, using site-specific protein­DNA photocrosslinking to define positions of the RNAP trailing and leading edges and of σ relative to DNA at the λPR' promoter, we show directly that σ-dependent pausing in the absence of GreB in vitro predominantly involves a state backtracked by 2­4 bp, and σ-dependent pausing in the presence of GreB in vitro and in vivo predominantly involves a state scrunched by 2­3 bp. Analogous experiments with a library of 47 (∼16,000) transcribed-region sequences show that the state scrunched by 2­3 bp­and only that state­is associated with the consensus sequence, T−3N−2Y−1G+1, (where −1 corresponds to the position of the RNA 3' end), which is identical to the consensus for pausing in initial transcription and which is related to the consensus for pausing in transcription elongation. Experiments with heteroduplex templates show that sequence information at position T−3 resides in the DNA nontemplate strand. A cryoelectron microscopy structure of a complex engaged in σ-dependent pausing reveals positions of DNA scrunching on the DNA nontemplate and template strands and suggests that position T−3 of the consensus sequence exerts its effects by facilitating scrunching.


Assuntos
RNA Polimerases Dirigidas por DNA , Transcrição Gênica , Microscopia Crioeletrônica , DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética
10.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34187896

RESUMO

Chemical modifications of RNA 5'-ends enable "epitranscriptomic" regulation, influencing multiple aspects of RNA fate. In transcription initiation, a large inventory of substrates compete with nucleoside triphosphates for use as initiating entities, providing an ab initio mechanism for altering the RNA 5'-end. In Escherichia coli cells, RNAs with a 5'-end hydroxyl are generated by use of dinucleotide RNAs as primers for transcription initiation, "primer-dependent initiation." Here, we use massively systematic transcript end readout (MASTER) to detect and quantify RNA 5'-ends generated by primer-dependent initiation for ∼410 (∼1,000,000) promoter sequences in E. coli The results show primer-dependent initiation in E. coli involves any of the 16 possible dinucleotide primers and depends on promoter sequences in, upstream, and downstream of the primer binding site. The results yield a consensus sequence for primer-dependent initiation, YTSS-2NTSS-1NTSSWTSS+1, where TSS is the transcription start site, NTSS-1NTSS is the primer binding site, Y is pyrimidine, and W is A or T. Biochemical and structure-determination studies show that the base pair (nontemplate-strand base:template-strand base) immediately upstream of the primer binding site (Y:RTSS-2, where R is purine) exerts its effect through the base on the DNA template strand (RTSS-2) through interchain base stacking with the RNA primer. Results from analysis of a large set of natural, chromosomally encoded Ecoli promoters support the conclusions from MASTER. Our findings provide a mechanistic and structural description of how TSS-region sequence hard-codes not only the TSS position but also the potential for epitranscriptomic regulation through primer-dependent transcription initiation.


Assuntos
Primers do DNA/metabolismo , Escherichia coli/genética , Regiões Promotoras Genéticas , Iniciação da Transcrição Genética , Sequência de Bases , Sítios de Ligação , Cromossomos Bacterianos/genética , Regulação Bacteriana da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítio de Iniciação de Transcrição
11.
Cell ; 135(2): 295-307, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18957204

RESUMO

The alpha-pyrone antibiotic myxopyronin (Myx) inhibits bacterial RNA polymerase (RNAP). Here, through a combination of genetic, biochemical, and structural approaches, we show that Myx interacts with the RNAP "switch region"--the hinge that mediates opening and closing of the RNAP active center cleft--to prevent interaction of RNAP with promoter DNA. We define the contacts between Myx and RNAP and the effects of Myx on RNAP conformation and propose that Myx functions by interfering with opening of the RNAP active-center cleft during transcription initiation. We further show that the structurally related alpha-pyrone antibiotic corallopyronin (Cor) and the structurally unrelated macrocyclic-lactone antibiotic ripostatin (Rip) function analogously to Myx. The RNAP switch region is distant from targets of previously characterized RNAP inhibitors, and, correspondingly, Myx, Cor, and Rip do not exhibit crossresistance with previously characterized RNAP inhibitors. The RNAP switch region is an attractive target for identification of new broad-spectrum antibacterial therapeutic agents.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , Thermus thermophilus/enzimologia , Infecções Bacterianas/tratamento farmacológico , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactonas/farmacologia , Modelos Moleculares , Regiões Promotoras Genéticas , Transcrição Gênica
12.
Mol Cell ; 60(6): 953-65, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26626484

RESUMO

We report the development of a next-generation sequencing-based technology that entails construction of a DNA library comprising up to at least 4(7) (∼ 16,000) barcoded sequences, production of RNA transcripts, and analysis of transcript ends and transcript yields (massively systematic transcript end readout, "MASTER"). Using MASTER, we define full inventories of transcription start sites ("TSSomes") of Escherichia coli RNA polymerase for initiation at a consensus core promoter in vitro and in vivo; we define the TSS-region DNA sequence determinants for TSS selection, reiterative initiation ("slippage synthesis"), and transcript yield; and we define effects of DNA topology and NTP concentration. The results reveal that slippage synthesis occurs from the majority of TSS-region DNA sequences and that TSS-region DNA sequences have profound, up to 100-fold, effects on transcript yield. The results further reveal that TSSomes depend on DNA topology, consistent with the proposal that TSS selection involves transcription-bubble expansion ("scrunching") and transcription-bubble contraction ("anti-scrunching").


Assuntos
Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sítio de Iniciação de Transcrição , Código de Barras de DNA Taxonômico , DNA Bacteriano/análise , Regiões Promotoras Genéticas , RNA Bacteriano/análise , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Transcrição Gênica
13.
Nucleic Acids Res ; 49(5): 2790-2802, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33589919

RESUMO

The RNA polymerase (RNAP) clamp, a mobile structural element conserved in RNAP from all domains of life, has been proposed to play critical roles at different stages of transcription. In previous work, we demonstrated using single-molecule Förster resonance energy transfer (smFRET) that RNAP clamp interconvert between three short-lived conformational states (lifetimes ∼ 0.3-0.6 s), that the clamp can be locked into any one of these states by small molecules, and that the clamp stays closed during initial transcription and elongation. Here, we extend these studies to obtain a comprehensive understanding of clamp dynamics under conditions RNAP may encounter in living cells. We find that the RNAP clamp can populate long-lived conformational states (lifetimes > 1.0 s) and can switch between these long-lived states and the previously observed short-lived states. In addition, we find that clamp motions are increased in the presence of molecular crowding, are unchanged in the presence of elevated monovalent-cation concentrations, and are reduced in the presence of elevated divalent-cation concentrations. Finally, we find that RNAP bound to non-specific DNA predominantly exhibits a closed clamp conformation. Our results raise the possibility of additional regulatory checkpoints that could affect clamp dynamics and consequently could affect transcription and transcriptional regulation.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Cátions Bivalentes , Cátions Monovalentes , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Transferência Ressonante de Energia de Fluorescência , Polietilenoglicóis/química , Conformação Proteica
14.
Proc Natl Acad Sci U S A ; 117(11): 5801-5809, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32127479

RESUMO

All organisms-bacteria, archaea, and eukaryotes-have a transcription initiation factor that contains a structural module that binds within the RNA polymerase (RNAP) active-center cleft and interacts with template-strand single-stranded DNA (ssDNA) in the immediate vicinity of the RNAP active center. This transcription initiation-factor structural module preorganizes template-strand ssDNA to engage the RNAP active center, thereby facilitating binding of initiating nucleotides and enabling transcription initiation from initiating mononucleotides. However, this transcription initiation-factor structural module occupies the path of nascent RNA and thus presumably must be displaced before or during initial transcription. Here, we report four sets of crystal structures of bacterial initially transcribing complexes that demonstrate and define details of stepwise, RNA-extension-driven displacement of the "σ-finger" of the bacterial transcription initiation factor σ. The structures reveal that-for both the primary σ-factor and extracytoplasmic (ECF) σ-factors, and for both 5'-triphosphate RNA and 5'-hydroxy RNA-the "σ-finger" is displaced in stepwise fashion, progressively folding back upon itself, driven by collision with the RNA 5'-end, upon extension of nascent RNA from ∼5 nt to ∼10 nt.


Assuntos
Proteínas de Escherichia coli/química , Fator sigma/química , Iniciação da Transcrição Genética , Sítios de Ligação , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Regiões Promotoras Genéticas , Ligação Proteica , RNA/química , RNA/genética , RNA/metabolismo , Fator sigma/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(27): 15642-15649, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571927

RESUMO

The RNA polymerase (RNAP) trigger loop (TL) is a mobile structural element of the RNAP active center that, based on crystal structures, has been proposed to cycle between an "unfolded"/"open" state that allows an NTP substrate to enter the active center and a "folded"/"closed" state that holds the NTP substrate in the active center. Here, by quantifying single-molecule fluorescence resonance energy transfer between a first fluorescent probe in the TL and a second fluorescent probe elsewhere in RNAP or in DNA, we detect and characterize TL closing and opening in solution. We show that the TL closes and opens on the millisecond timescale; we show that TL closing and opening provides a checkpoint for NTP complementarity, NTP ribo/deoxyribo identity, and NTP tri/di/monophosphate identity, and serves as a target for inhibitors; and we show that one cycle of TL closing and opening typically occurs in each nucleotide addition cycle in transcription elongation.


Assuntos
RNA Polimerases Dirigidas por DNA/química , DNA/química , RNA/química , Transcrição Gênica , Domínio Catalítico , DNA/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/ultraestrutura , Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Nucleotídeos , Conformação Proteica , Dobramento de Proteína , RNA/genética , Imagem Individual de Molécula
16.
Nature ; 535(7612): 444-7, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27383794

RESUMO

The chemical nature of the 5' end of RNA is a key determinant of RNA stability, processing, localization and translation efficiency, and has been proposed to provide a layer of 'epitranscriptomic' gene regulation. Recently it has been shown that some bacterial RNA species carry a 5'-end structure reminiscent of the 5' 7-methylguanylate 'cap' in eukaryotic RNA. In particular, RNA species containing a 5'-end nicotinamide adenine dinucleotide (NAD+) or 3'-desphospho-coenzyme A (dpCoA) have been identified in both Gram-negative and Gram-positive bacteria. It has been proposed that NAD+, reduced NAD+ (NADH) and dpCoA caps are added to RNA after transcription initiation, in a manner analogous to the addition of 7-methylguanylate caps. Here we show instead that NAD+, NADH and dpCoA are incorporated into RNA during transcription initiation, by serving as non-canonical initiating nucleotides (NCINs) for de novo transcription initiation by cellular RNA polymerase (RNAP). We further show that both bacterial RNAP and eukaryotic RNAP II incorporate NCIN caps, that promoter DNA sequences at and upstream of the transcription start site determine the efficiency of NCIN capping, that NCIN capping occurs in vivo, and that NCIN capping has functional consequences. We report crystal structures of transcription initiation complexes containing NCIN-capped RNA products. Our results define the mechanism and structural basis of NCIN capping, and suggest that NCIN-mediated 'ab initio capping' may occur in all organisms.


Assuntos
Coenzima A/metabolismo , NAD/metabolismo , Capuzes de RNA/metabolismo , Iniciação da Transcrição Genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , RNA Polimerases Dirigidas por DNA/metabolismo , Dados de Sequência Molecular , Nucleotídeos/química , Nucleotídeos/metabolismo , Regiões Promotoras Genéticas/genética , Capuzes de RNA/química , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sítio de Iniciação de Transcrição
17.
Proc Natl Acad Sci U S A ; 116(37): 18384-18390, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31455742

RESUMO

Lambdoid bacteriophage Q protein mediates the switch from middle to late bacteriophage gene expression by enabling RNA polymerase (RNAP) to read through transcription terminators preceding bacteriophage late genes. Q loads onto RNAP engaged in promoter-proximal pausing at a Q binding element (QBE) and adjacent sigma-dependent pause element (SDPE) to yield a Q-loading complex, and Q subsequently translocates with RNAP as a pausing-deficient, termination-deficient Q-loaded complex. Here, we report high-resolution structures of 4 states on the pathway of antitermination by Q from bacteriophage 21 (Q21): Q21, the Q21-QBE complex, the Q21-loading complex, and the Q21-loaded complex. The results show that Q21 forms a torus, a "nozzle," that narrows and extends the RNAP RNA-exit channel, extruding topologically linked single-stranded RNA and preventing the formation of pause and terminator hairpins.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas de Bactérias/genética , Bacteriófago lambda/genética , Sequência de Bases , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Regulação da Expressão Gênica , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , Proteínas Recombinantes , Regiões Terminadoras Genéticas , Transcrição Gênica , Proteínas Virais/genética
18.
Angew Chem Int Ed Engl ; 61(45): e202211498, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36222275

RESUMO

Rifamycin antibiotics are a valuable class of antimicrobials for treating infections by mycobacteria and other persistent bacteria owing to their potent bactericidal activity against replicating and non-replicating pathogens. However, the clinical utility of rifamycins against Mycobacterium abscessus is seriously compromised by a novel resistance mechanism, namely, rifamycin inactivation by ADP-ribosylation. Using a structure-based approach, we rationally redesign rifamycins through strategic modification of the ansa-chain to block ADP-ribosylation while preserving on-target activity. Validated by a combination of biochemical, structural, and microbiological studies, the most potent analogs overcome ADP-ribosylation, restored their intrinsic low nanomolar activity and demonstrated significant in vivo antibacterial efficacy. Further optimization by tuning drug disposition properties afforded a preclinical candidate with remarkable potency and an outstanding pharmacokinetic profile.


Assuntos
Mycobacterium , Rifamicinas , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Rifamicinas/farmacologia , Rifamicinas/química , ADP-Ribosilação
20.
Nucleic Acids Res ; 46(14): 7284-7295, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29878276

RESUMO

RNA polymerase (RNAP) contains a mobile structural module, the 'clamp,' that forms one wall of the RNAP active-center cleft and that has been linked to crucial aspects of the transcription cycle, including promoter melting, transcription elongation complex stability, transcription pausing, and transcription termination. Using single-molecule FRET on surface-immobilized RNAP molecules, we show that the clamp in RNAP holoenzyme populates three distinct conformational states and interconvert between these states on the 0.1-1 s time-scale. Similar studies confirm that the RNAP clamp is closed in open complex (RPO) and in initial transcribing complexes (RPITC), including paused initial transcribing complexes, and show that, in these complexes, the clamp does not exhibit dynamic behaviour. We also show that, the stringent-response alarmone ppGpp, which reprograms transcription during amino acid starvation stress, selectively stabilizes the partly-closed-clamp state and prevents clamp opening; these results raise the possibility that ppGpp controls promoter opening by modulating clamp dynamics.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/química , Conformação Proteica , Transcrição Gênica , Sequência de Bases , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Cinética , Ligação Proteica , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa