Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Bioelectromagnetics ; 44(3-4): 77-89, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36999566

RESUMO

The increasing use of nonionizing radiofrequency electromagnetic fields (RF-EMFs) in a wide range of technologies necessitates studies to further understanding of biological effects from exposures to such forms of electromagnetic fields. While previous studies have described mechanisms for cellular changes occurring following exposure to low-intensity RF-EMFs, the role of molecular epigenetics has not been thoroughly investigated. Specifically unresolved is the effect of RF-EMFs on deoxyribonucleic acid (DNA) methylation, which is a powerful epigenetic process, used by cells to regulate gene expression. DNA methylation is dynamic and can be rapidly triggered in response to external stimuli such as exposure to RF-EMFs. In the present study, we performed a global analysis of DNA methylation patterns in human keratinocytes exposed to 900 MHz RF-EMFs for 1 h at a low dose rate (estimated mean specific absorption rate (SAR) < 10 mW/kg). We used a custom system to allow stable exposure of cell cultures to RF-EMFs under biologically relevant conditions (37 °C, 5% CO2 , 95% humidity). We performed whole genome bisulfite sequencing directly following RF-EMF exposure to examine the immediate changes in DNA methylation patterns and identify early differentially methylated genes in RF-EMF-exposed keratinocytes. By correlating global gene expression to whole genome bisulfite sequencing, we identified six common targets that were both differentially methylated and differentially expressed in response to RF-EMF exposure. The results highlight a potential epigenetic role in the cellular response to RF-EMFs. Particularly, the six identified targets may potentially be developed as epigenetic biomarkers for immediate responses to RF-EMF exposure. Bioelectromagnetics. 1-13, © 2023 Bioelectromagnetics Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Metilação de DNA , Campos Eletromagnéticos , Humanos , Campos Eletromagnéticos/efeitos adversos , Queratinócitos , Ondas de Rádio/efeitos adversos
2.
Bioelectromagnetics ; 44(1-2): 5-16, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36786477

RESUMO

Previous research has shown that virus infectivity can be dramatically reduced by radio frequency exposure in the gigahertz (GHz) frequency range. Given the worldwide SARS-CoV-2 pandemic, which has caused over 1 million deaths and has had a profound global economic impact, there is a need for a noninvasive technology that can reduce the transmission of virus among humans. RF is a potential wide area-of-effect viral decontamination technology that could be used in hospital rooms where patients are expelling virus, in grocery and convenience stores where local populations mix, and in first responder settings where rapid medical response spans many potentially infected locations within hours. In this study, we used bovine coronavirus (BCoV) as a surrogate of SARS-CoV-2 and exposed it to high peak power microwave (HPPM) pulses at four narrowband frequencies: 2.8, 5.6, 8.5, and 9.3 GHz. Exposures consisted of 2 µs pulses delivered at 500 Hz, with pulse counts varied by decades between 1 and 10,000. The peak field intensities (i.e. the instantaneous power density of each pulse) ranged between 0.6 and 6.5 MW/m2 , depending on the microwave frequency. The HPPM exposures were delivered to plastic coverslips containing BCoV dried on the surface. Hemagglutination (HA) and cytopathic effect analyses were performed 6 days after inoculation of host cells to assess viral infectivity. No change in viral infectivity was seen with increasing dose (pulse number) across the tested frequencies. Under all conditions tested, exposure did not reduce infectivity more than 1.0 log10. For the conditions studied, high peak power pulsed RF exposures in the 2-10 GHz range appear ineffective as a virucidal approach for hard surface decontamination. © 2023 Bioelectromagnetics Society.


Assuntos
COVID-19 , Inativação de Vírus , Animais , Bovinos , Humanos , SARS-CoV-2 , Micro-Ondas
3.
Phys Rev E ; 108(3-1): 034411, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849213

RESUMO

The fate and motion of cells is influenced by a variety of physical characteristics of their microenvironments. Traditionally, mechanobiology focuses on external mechanical phenomena such as cell movement and environmental sensing. However, cells are inherently dynamic, where internal waves and internal oscillations are a hallmark of living cells observed under a microscope. We propose that these internal mechanical rhythms provide valuable information about cell health. Therefore, it is valuable to capture the rhythms inside cells and quantify how drugs or physical interventions affect a cell's internal dynamics. One of the key dynamical entities inside cells is the microtubule network. Typically, microtubule dynamics are measured by end-protein tracking. In contrast, this paper introduces an easy-to-implement approach to measure the lateral motion of the microtubule filaments embedded within dense networks with (at least) confocal resolution image sequences. Our tool couples the computer vision algorithm Optical Flow with an anisotropic, rotating Laplacian of Gaussian filtering to characterize the lateral motion of dense microtubule networks. We then showcase additional image analytics used to understand the effect of microtubule orientation and regional location on lateral motion. We argue that our tool and these additional metrics provide a fuller picture of the active forcing environment within cells.


Assuntos
Processamento de Imagem Assistida por Computador , Microtúbulos , Movimento Celular , Fenômenos Mecânicos , Movimento (Física)
4.
AMB Express ; 13(1): 95, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689615

RESUMO

Previous work demonstrated inactivation of influenza virus by GHz frequency electromagnetic fields. Despite theoretical and experimental results, the underlying mechanism driving this inactivation remains unknown. One hypothesis is that the electromagnetic field is causing damage to the virion membrane (and therefore changing spike protein orientation) rendering the virus unable to attach and infect host cells. Towards examining this hypothesis, our group employed nanosecond pulsed electric fields (nsPEFs) as a surrogate to radiofrequency (RF) exposure to enable exploration of dose response thresholds of electric field-induced viral membrane damage. In summary, Bovine coronavirus (BCoV) was exposed, in suspension, to mono and bipolar 600-ns pulsed electric fields (nsPEFs) at two amplitudes (12.5 and 25 kV/cm) and pulse numbers [0 (sham), 1, 5, 10, 100, and 1000] at a 1 Hz (Hz) repetition rate. The temperature rise immediately after exposure(s) was measured using thermocouples to differentiate effects of the electric field (E-field) and heating (i.e., the thermal gradient). Inactivation of BCoV was evaluated by infecting HRT-18G host cells and assessing differences in virus infectivity days after exposure. Our results show that 600 nsPEFs, both bipolar and monopolar, can reduce the infectivity of coronaviruses at various amplitudes, pulse numbers, and pulse polarity. Interestingly, we observed that bipolar exposures appeared to be more efficient at lower exposure intensities than monopolar pulses. Future work should focus on experiments to identify the mechanism underlying nsPEF-induced viral inactivation.

5.
Sci Rep ; 13(1): 9800, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328590

RESUMO

Inactivation of influenza A virus by radiofrequency (RF) energy exposure at levels near Institute of Electrical and Electronics Engineers (IEEE) safety thresholds has been reported. The authors hypothesized that this inactivation was through a structure-resonant energy transfer mechanism. If this hypothesis is confirmed, such a technology could be used to prevent transmission of virus in occupied public spaces where RF irradiation of surfaces could be performed at scale. The present study aims to both replicate and expand the previous work by investigating the neutralization of bovine coronavirus (BCoV), a surrogate of SARS-CoV-2, by RF radiation in 6-12 GHz range. Results showed an appreciable reduction in BCoV infectivity (up to 77%) due to RF exposure to certain frequencies, but failed to generate enough reduction to be considered clinically significant.


Assuntos
COVID-19 , Coronavirus Bovino , Animais , Bovinos , Humanos , SARS-CoV-2 , Ondas de Rádio/efeitos adversos , Inativação de Vírus
6.
Sci Rep ; 12(1): 3506, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241689

RESUMO

Exposures to radiofrequency electromagnetic fields (RF-EMFs, 100 kHz to 6 GHz) have been associated with both positive and negative effects on cognitive behavior. To elucidate the mechanism of RF-EMF interaction, a few studies have examined its impact on neuronal activity and synaptic plasticity. However, there is still a need for additional basic research that further our understanding of the underlying mechanisms of RF-EMFs on the neuronal system. The present study investigated changes in neuronal activity and synaptic transmission following a 60-min exposure to 3.0 GHz RF-EMF at a low dose (specific absorption rate (SAR) < 1 W/kg). We showed that RF-EMF exposure decreased the amplitude of action potential (AP), depolarized neuronal resting membrane potential (MP), and increased neuronal excitability and synaptic transmission in cultured primary hippocampal neurons (PHNs). The results show that RF-EMF exposure can alter neuronal activity and highlight that more investigations should be performed to fully explore the RF-EMF effects and mechanisms.


Assuntos
Campos Eletromagnéticos , Hipocampo , Neurônios , Campos Eletromagnéticos/efeitos adversos , Hipocampo/efeitos da radiação , Neurônios/efeitos da radiação , Ondas de Rádio/efeitos adversos
7.
BMC Cancer ; 11: 43, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21276246

RESUMO

BACKGROUND: Oncolytic virotherapy for cancer treatment utilizes viruses for selective infection and death of cancer cells without any adverse effect on normal cells. We previously reported that the human respiratory syncytial virus (RSV) is a novel oncolytic virus against androgen-independent PC-3 human prostate cancer cells. The present study extends the result to androgen-dependent prostate cancer, and explores the underlying mechanism that triggers RSV-induced oncolysis of prostate cancer cells. METHODS: The oncolytic effect of RSV on androgen-sensitive LNCaP human prostate cancer cells and on androgen-independent RM1 murine prostate cancer cells was studied in vitro in culture and in vivo in a xenograft or allograft tumor model. In vitro, cell viability, infectivity and apoptosis were monitored by MTT assay, viral plaque assay and annexin V staining, respectively. In vivo studies involved virus administration to prostate tumors grown in immune compromised nude mice and in syngeneic immune competent C57BL/6J mice. Anti-tumorogenic oncolytic activity was monitored by measuring tumor volume, imaging bioluminescent tumors in live animals and performing histopathological analysis and TUNEL assay with tumors RESULTS: We show that RSV imposes a potent oncolytic effect on LNCaP prostate cancer cells. RSV infectivity was markedly higher in LNCaP cells compared to the non-tumorigenic RWPE-1 human prostate cells. The enhanced viral burden led to LNCaP cell apoptosis and growth inhibition of LNCaP xenograft tumors in nude mice. A functional host immune response did not interfere with RSV-induced oncolysis, since growth of xenograft tumors in syngeneic C57BL/6J mice from murine RM1 cells was inhibited upon RSV administration. LNCaP cells failed to activate the type-I interferon (IFNα/ß)-induced transcription factor STAT-1, which is required for antiviral gene expression, although these cells could produce IFN in response to RSV infection. The essential role of IFN in restricting infection was further borne out by our finding that neutralizing IFN activity resulted in enhanced RSV infection in non-tumorigenic RWPE-1 prostate cells. CONCLUSIONS: We demonstrated that RSV is potentially a useful therapeutic tool in the treatment of androgen-sensitive and androgen-independent prostate cancer. Moreover, impaired IFN-mediated antiviral response is the likely cause of higher viral burden and resulting oncolysis of androgen-sensitive prostate cancer cells.


Assuntos
Terapia Viral Oncolítica/métodos , Neoplasias da Próstata/terapia , Neoplasias da Próstata/virologia , Vírus Sinciciais Respiratórios/fisiologia , Androgênios/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Interferons/metabolismo , Interferons/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , NF-kappa B/metabolismo , Vírus Oncolíticos/fisiologia , Neoplasias da Próstata/patologia , Fator de Transcrição STAT1/metabolismo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Cell Biochem ; 342(1-2): 143-50, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20440542

RESUMO

It is well-established that CYP24, an immediate target gene of VDR is upregulated by VDR ligands. This study is focused on the functional role of unliganded VDR by investigating the correlation between the expression of VDR protein and basal mRNA levels of CYP24 in breast cancer cell lines. Analyses of multiple breast cancer cell lines demonstrated an inverse correlation between VDR protein expression and CYP24 mRNA expression levels; while in the presence of ligand, VDR protein level was positively correlated with CYP24 expression. In MCF-7 cells, VDR was mainly distributed in the nuclei in the absence of ligand. VDR overexpression in MCF-7 cells and MDA-MB231 cells decreased CYP24 mRNA expression levels and CYP24 promoter activity. Conversely, knock-down of VDR using siRNA techniques in MCF-7 and T47D cells significantly increased CYP24 mRNA expression. We also found that overexpression of VDR with a polymorphic site (FokI-FF) at its AF-1 domain, which makes VDR shorter by three amino acids, failed to repress CYP24 promoter activity. This report provides conclusive evidence for the repressive action of unliganded VDR on the expression of its target gene CYP24 and the importance of an intact VDR AF-1 domain for its repressive action.


Assuntos
Receptores de Calcitriol/metabolismo , Esteroide Hidroxilases/genética , Transcrição Gênica , Western Blotting , Neoplasias da Mama , Proliferação de Células , Feminino , Humanos , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , Receptores de Calcitriol/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esteroide Hidroxilases/antagonistas & inibidores , Esteroide Hidroxilases/metabolismo , Células Tumorais Cultivadas , Vitamina D3 24-Hidroxilase
9.
Biomed Opt Express ; 10(6): 2942-2955, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259064

RESUMO

Terahertz imaging has been proposed for burns and skin cancer identification. However, the role of melanocytes, melanosomes, melanin content and distribution in determining the terahertz optical properties of human skin has not been investigated. We use terahertz time domain spectroscopy to measure the optical properties of in vitro pigmented human skin tissue models from Asian, Black, and Caucasian donors. Spectra were collected at various time intervals and used to extract the absorption coefficient and index of refraction at terahertz frequencies. Our results indicate that the degree of cell differentiation and type of donor both contribute to the measured terahertz optical properties.

10.
Mol Endocrinol ; 21(9): 2099-111, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17595319

RESUMO

The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are the primary transcription factors coordinating induced expression of the enzymes and proteins directing oxidative, conjugative, and transport phases of endobiotic and xenobiotic metabolism, whereas hepatocyte nuclear factor 4alpha (HNF4alpha), a regulator of hepatic lipid homeostasis, can modify the PXR/CAR response. Steroid- and bile acid-sulfotransferase (SULT2A1) promotes phase II metabolism through its sulfonating action on certain endobiotics, including steroids and bile acids, and on diverse xenobiotics, including therapeutic drugs. This study describes characterization of a PXR- and CAR-inducible composite element in the human SULT2A1 promoter and its synergistic interaction with HNF4alpha. Inverted and direct repeats of AG(G/T)TCA (IR2 and DR4), both binding to PXR and CAR, define the composite element. Differential recognition of the composite element by PXR and CAR is evident because single-site mutation at either IR2 or DR4 in the natural gene abolished the PXR response, whereas mutations at both repeats were necessary to abrogate completely the CAR response. The composite element conferred xenobiotic response to a heterologous promoter, and the cognate ligands induced PXR and CAR recruitment to the chromatin-associated response region. An HNF4alpha element adjacent to the -30 position enhanced basal promoter activity. Although functioning as a synergizer, the HNF4alpha element was not essential for the PXR/CAR response. An emerging role of SULT2A1 in lipid and caloric homeostasis suggests that illumination on the regulatory interactions driving human SULT2A1 expression may reveal new avenues to control certain metabolic disorders.


Assuntos
Fator 4 Nuclear de Hepatócito/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores de Esteroides/fisiologia , Sulfotransferases/biossíntese , Fatores de Transcrição/fisiologia , Xenobióticos/metabolismo , Animais , Receptor Constitutivo de Androstano , Indução Enzimática/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Pregnano X , Sulfotransferases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa