Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Magn Reson Imaging ; 55(2): 323-335, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33140551

RESUMO

BACKGROUND: Phase-contrast (PC) MRI is a feasible and valid noninvasive technique to measure renal artery blood flow, showing potential to support diagnosis and monitoring of renal diseases. However, the variability in measured renal blood flow values across studies is large, most likely due to differences in PC-MRI acquisition and processing. Standardized acquisition and processing protocols are therefore needed to minimize this variability and maximize the potential of renal PC-MRI as a clinically useful tool. PURPOSE: To build technical recommendations for the acquisition, processing, and analysis of renal 2D PC-MRI data in human subjects to promote standardization of renal blood flow measurements and facilitate the comparability of results across scanners and in multicenter clinical studies. STUDY TYPE: Systematic consensus process using a modified Delphi method. POPULATION: Not applicable. SEQUENCE FIELD/STRENGTH: Renal fast gradient echo-based 2D PC-MRI. ASSESSMENT: An international panel of 27 experts from Europe, the USA, Australia, and Japan with 6 (interquartile range 4-10) years of experience in 2D PC-MRI formulated consensus statements on renal 2D PC-MRI in two rounds of surveys. Starting from a recently published systematic review article, literature-based and data-driven statements regarding patient preparation, hardware, acquisition protocol, analysis steps, and data reporting were formulated. STATISTICAL TESTS: Consensus was defined as ≥75% unanimity in response, and a clear preference was defined as 60-74% agreement among the experts. RESULTS: Among 60 statements, 57 (95%) achieved consensus after the second-round survey, while the remaining three showed a clear preference. Consensus statements resulted in specific recommendations for subject preparation, 2D renal PC-MRI data acquisition, processing, and reporting. DATA CONCLUSION: These recommendations might promote a widespread adoption of renal PC-MRI, and may help foster the set-up of multicenter studies aimed at defining reference values and building larger and more definitive evidence, and will facilitate clinical translation of PC-MRI. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Rim , Imageamento por Ressonância Magnética , Consenso , Técnica Delphi , Humanos , Estudos Multicêntricos como Assunto , Circulação Renal
2.
Crit Care ; 26(1): 262, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050748

RESUMO

BACKGROUND: Renal hypoperfusion has been suggested to contribute to the development of acute kidney injury (AKI) in critical COVID-19. However, limited data exist to support this. We aim to investigate the differences in renal perfusion, oxygenation and water diffusion using multiparametric magnetic resonance imaging in critically ill COVID-19 patients with and without AKI. METHODS: A prospective case-control study where patients without prior kidney disease treated in intensive care for respiratory failure due to COVID-19 were examined. Kidney Disease: Improving Global Outcomes Creatinine criteria were used for group allocation. Main comparisons were tested using Mann-Whitney U test. RESULTS: Nineteen patients were examined, ten with AKI and nine without AKI. Patients with AKI were examined in median 1 [0-2] day after criteria fulfillment. Age and baseline Plasma-Creatinine were similar in both groups. Total renal blood flow was lower in patients with AKI compared with patients without (median 645 quartile range [423-753] vs. 859 [746-920] ml/min, p = 0.037). Regional perfusion was reduced in both cortex (76 [51-112] vs. 146 [123-169] ml/100 g/min, p = 0.015) and medulla (28 [18-47] vs. 47 [38-73] ml/100 g/min, p = 0.03). Renal venous saturation was similar in both groups (72% [64-75] vs. 72% [63-84], ns.), as was regional oxygenation (R2*) in cortex (17 [16-19] vs. 17 [16-18] 1/s, ns.) and medulla (29 [24-39] vs. 27 [23-29] 1/s, ns.). CONCLUSIONS: In critically ill COVID-19 patients with AKI, the total, cortical and medullary renal blood flows were reduced compared with similar patients without AKI, whereas no differences in renal oxygenation were demonstrable in this setting. Trial registration ClinicalTrials ID: NCT02765191 , registered May 6 2014 and updated May 7 2020.


Assuntos
Injúria Renal Aguda , COVID-19 , Injúria Renal Aguda/diagnóstico por imagem , COVID-19/complicações , Estudos de Casos e Controles , Creatinina , Estado Terminal , Humanos , Espectroscopia de Ressonância Magnética , Perfusão
3.
Am J Physiol Renal Physiol ; 319(6): F966-F978, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33073586

RESUMO

Circadian regulation of kidney function is involved in maintaining whole body homeostasis, and dysfunctional circadian rhythm can potentially be involved in disease development. Magnetic resonance imaging (MRI) provides reliable and reproducible repetitive estimates of kidney function noninvasively without the risk of adverse events associated with contrast agents and ionizing radiation. The purpose of this study was to estimate circadian variations in kidney function in healthy human subjects with MRI and to relate the findings to urinary excretions of electrolytes and markers of kidney function. Phase-contrast imaging, arterial spin labeling, and blood oxygen level-dependent transverse relaxation rate (R2*) mapping were used to assess total renal blood flow and regional perfusion as well as intrarenal oxygenation in eight female and eight male healthy volunteers every fourth hour during a 24-h period. Parallel with MRI scans, standard urinary and plasma parameters were quantified. Significant circadian variations of total renal blood flow were found over 24 h, with increasing flow from noon to midnight and decreasing flow during the night. In contrast, no circadian variation in intrarenal oxygenation was detected. Urinary excretions of electrolytes, osmotically active particles, creatinine, and urea all displayed circadian variations, peaking during the afternoon and evening hours. In conclusion, total renal blood flow and kidney function, as estimated from excretion of electrolytes and waste products, display profound circadian variations, whereas intrarenal oxygenation displays significantly less circadian variation.


Assuntos
Ritmo Circadiano/fisiologia , Rim/fisiologia , Imageamento por Ressonância Magnética , Circulação Renal/fisiologia , Adulto , Eletrólitos/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Fatores Sexuais , Adulto Jovem
4.
MAGMA ; 33(1): 199-215, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31768797

RESUMO

Harmonization of acquisition and analysis protocols is an important step in the validation of BOLD MRI as a renal biomarker. This harmonization initiative provides technical recommendations based on a consensus report with the aim to move towards standardized protocols that facilitate clinical translation and comparison of data across sites. We used a recently published systematic review paper, which included a detailed summary of renal BOLD MRI technical parameters and areas of investigation in its supplementary material, as the starting point in developing the survey questionnaires for seeking consensus. Survey data were collected via the Delphi consensus process from 24 researchers on renal BOLD MRI exam preparation, data acquisition, data analysis, and interpretation. Consensus was defined as ≥ 75% unanimity in response. Among 31 survey questions, 14 achieved consensus resolution, 12 showed clear respondent preference (65-74% agreement), and 5 showed equal (50/50%) split in opinion among respondents. Recommendations for subject preparation, data acquisition, processing and reporting are given based on the survey results and review of the literature. These technical recommendations are aimed towards increased inter-site harmonization, a first step towards standardization of renal BOLD MRI protocols across sites. We expect this to be an iterative process updated dynamically based on progress in the field.


Assuntos
Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/tendências , Animais , Biomarcadores/metabolismo , Consenso , Técnica Delphi , Humanos , Rim/metabolismo , Imageamento por Ressonância Magnética/normas , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Inquéritos e Questionários , Pesquisa Translacional Biomédica/tendências
5.
Am J Physiol Renal Physiol ; 316(4): F693-F702, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30648907

RESUMO

Noninvasive methods of magnetic resonance imaging (MRI) can quantify parameters of kidney function. The main purpose of this study was to determine baseline values of such parameters in healthy volunteers. In 28 healthy volunteers (15 women and 13 men), arterial spin labeling to estimate regional renal perfusion, blood oxygen level-dependent transverse relaxation rate (R2*) to estimate oxygenation, and apparent diffusion coefficient (ADC), true diffusion (D), and longitudinal relaxation time (T1) to estimate tissue properties were determined bilaterally in the cortex and outer and inner medulla. Additionally, phase-contrast MRI was applied in the renal arteries to quantify total renal blood flow. The results demonstrated profound gradients of perfusion, ADC, and D with highest values in the kidney cortex and a decrease towards the inner medulla. R2* and T1 were lowest in kidney cortex and increased towards the inner medulla. Total renal blood flow correlated with body surface area, body mass index, and renal volume. Similar patterns in all investigated parameters were observed in women and men. In conclusion, noninvasive MRI provides useful tools to evaluate intrarenal differences in blood flow, perfusion, diffusion, oxygenation, and structural properties of the kidney tissue. As such, this experimental approach has the potential to advance our present understanding regarding normal physiology and the pathological processes associated with acute and chronic kidney disease.


Assuntos
Rim/diagnóstico por imagem , Rim/fisiologia , Adulto , Índice de Massa Corporal , Superfície Corporal , Água Corporal/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Rim/anatomia & histologia , Córtex Renal/metabolismo , Medula Renal/metabolismo , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Circulação Renal , Adulto Jovem
6.
Clin Exp Pharmacol Physiol ; 40(2): 158-67, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23252679

RESUMO

The interruption of blood flow results in impaired oxygenation and metabolism. This can lead to electrophysiological changes, functional impairment and symptoms in quick succession. Quantitative measures of organ perfusion, perfusion reserve and tissue oxygenation are crucial to assess normal tissue metabolism and function. Magnetic resonance imaging (MRI) provides a number of quantitative methods to assess physiology in the kidney. Blood oxygenation level-dependent (BOLD) MRI provides a method for the assessment of oxygenation. Blood flow to the kidney can be assessed using phase contrast MRI. Dynamic contrast-enhanced MRI and arterial spin labelling (ASL) provide methods to assess tissue perfusion, ASL using the magnetization of endogenous water protons and thus providing a non-invasive method to assess perfusion. The application of diffusion-weighted MRI allows molecular motion in the kidney to be measured. Novel techniques can also be used to assess oxygenation in the renal arteries and veins and, combined with flow measures, provide an estimation of oxygen metabolism. Magnetic resonance imaging provides a synergy of non-invasive techniques to study renal function and the demand for these techniques is likely to be driven by the incentive to avoid the use of contrast media, to avoid radiation and to avoid complications with intervention procedures.


Assuntos
Diagnóstico por Imagem/tendências , Metabolismo Energético/fisiologia , Hemodinâmica/fisiologia , Rim/fisiologia , Consumo de Oxigênio/fisiologia , Animais , Diagnóstico por Imagem/métodos , Humanos , Rim/metabolismo , Rim/fisiopatologia , Oxigênio/metabolismo
7.
Adv Exp Med Biol ; 765: 55-58, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22879014

RESUMO

MR examinations (Achieva 3 T, Philips, Best, The Netherlands) were performed at five different occasions in a healthy volunteer (male 60 years) and in one renal cancer patient (male 78 years) with normal renal function (creatinine 88 µmol/L). Intravoxel incoherent motion (IVIM) coefficients D + D* were measured using respiratory-triggered diffusion-weighted spin-echo echo-planar imaging. Perfusion data of the patient were acquired using a saturation-recovery gradient-echo sequence and with the bolus of Gd-BOPTA (Multihance). D + D* were computed by monoexponential fitting of MR signal intensity attenuation versus b for b = 0, 50, 100, 150 s/mm(2). Perfusion parameters were evaluated with "NordicICE" software. The map of D + D* was compared qualitatively with the perfusion map computed from the Gd scan. D + D* values of the cortex and medulla were in the range 2.3-2.7 and 1.1-1.6 × 10(-3) mm(2)/s, respectively. In conclusion, in this pilot study a good qualitative relation between IVIM variables D + D* and renal perfusion has been found.


Assuntos
Meios de Contraste , Imagem de Difusão por Ressonância Magnética , Neoplasias Renais/patologia , Rim/citologia , Idoso , Gadolínio , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa