Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 134(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34854468

RESUMO

Dynein motors move the mitotic spindle to the cell division plane in many cell types, including in budding yeast, in which dynein is assisted by numerous factors including the microtubule-associated protein (MAP) She1. Evidence suggests that She1 plays a role in polarizing dynein-mediated spindle movements toward the daughter cell; however, how She1 performs this function is unknown. We find that She1 assists dynein in maintaining the spindle in close proximity to the bud neck, such that, at anaphase onset, the chromosomes are segregated to mother and daughter cells. She1 does so by attenuating the initiation of dynein-mediated spindle movements within the mother cell, thus ensuring such movements are polarized toward the daughter cell. Our data indicate that this activity relies on She1 binding to the microtubule-bound conformation of the dynein microtubule-binding domain, and to astral microtubules within mother cells. Our findings reveal how an asymmetrically localized MAP directionally tunes dynein activity by attenuating motor activity in a spatially confined manner.


Assuntos
Proteínas Associadas aos Microtúbulos , Proteínas de Saccharomyces cerevisiae , Dineínas/genética , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo
2.
Methods Mol Biol ; 2623: 25-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36602677

RESUMO

Cytoplasmic dynein-1 is a minus end-directed microtubule motor that transports numerous cargoes in cell types throughout the evolutionary spectrum. Dynein is regulated by various motor-intrinsic and motor-extrinsic factors that enhance its processivity, recruit it to various cellular sites, or otherwise promote or restrict its activity. Studying dynein activity in higher eukaryotes is complicated by various factors, including the myriad functions in which this motor participates, and the consequential pleotropic effects associated with disrupting its activity. Budding yeast has long been a powerful model system for understanding this enormous motor protein complex, which is highly conserved between yeast and humans at the primary sequence and structural levels. Studies in budding yeast are simplified by the fact that dynein only performs one known function in this organism: to position the mitotic spindle at the site of cell division. Monitoring dynein-mediated spindle movements in budding yeast provides a powerful tool for the quantitative measurements of various motility parameters, and a system with which to assess the consequence of mutations in dynein or its regulators. Here, we provide detailed protocols to perform quantitative measurements of dynein activity in live cells using a combination of fluorescence microscopy and computational methods to track and quantitate dynein-mediated spindle movements. These methods are broadly applicable to anyone that wishes to perform fluorescence microscopy on budding yeast.


Assuntos
Dineínas , Saccharomycetales , Humanos , Dineínas/metabolismo , Saccharomycetales/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Biophys J ; 103(8): 1727-34, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23083716

RESUMO

The Kv2.1 voltage-gated potassium channel forms stable clusters on the surface of different mammalian cells. Even though these cell-surface structures have been observed for almost a decade, little is known about the mechanism by which cells maintain them. We measure the distribution of domain sizes to study the kinetics of their growth. Using a Fokker-Planck formalism, we find no evidence for a feedback mechanism present to maintain specific domain radii. Instead, the size of Kv2.1 clusters is consistent with a model where domain size is established by fluctuations in the trafficking machinery. These results are further validated using likelihood and Akaike weights to select the best model for the kinetics of domain growth consistent with our experimental data.


Assuntos
Canais de Potássio Shab/metabolismo , Membrana Celular/química , Células HEK293 , Humanos , Modelos Teóricos , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Potássio Shab/química
4.
Nat Commun ; 8(1): 2151, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247176

RESUMO

Cytoplasmic dynein is an enormous minus end-directed microtubule motor. Rather than existing as bare tracks, microtubules are bound by numerous microtubule-associated proteins (MAPs) that have the capacity to affect various cellular functions, including motor-mediated transport. One such MAP is She1, a dynein effector that polarizes dynein-mediated spindle movements in budding yeast. Here, we characterize the molecular basis by which She1 affects dynein, providing the first such insight into which a MAP can modulate motor motility. We find that She1 affects the ATPase rate, microtubule-binding affinity, and stepping behavior of dynein, and that microtubule binding by She1 is required for its effects on dynein motility. Moreover, we find that She1 directly contacts the microtubule-binding domain of dynein, and that their interaction is sensitive to the nucleotide-bound state of the motor. Our data support a model in which simultaneous interactions between the microtubule and dynein enables She1 to directly affect dynein motility.


Assuntos
Dineínas/metabolismo , Microtúbulos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Dineínas/química , Dineínas/genética , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/química , Miosina Tipo V/genética , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa