Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 186(20): 4310-4324.e23, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37703874

RESUMO

Cellular homeostasis requires the robust control of biomolecule concentrations, but how do millions of mRNAs coordinate their stoichiometries in the face of dynamic translational changes? Here, we identified a two-tiered mechanism controlling mRNA:mRNA and mRNA:protein stoichiometries where mRNAs super-assemble into condensates with buffering capacity and sorting selectivity through phase-transition mechanisms. Using C. elegans oogenesis arrest as a model, we investigated the transcriptome cytosolic reorganization through the sequencing of RNA super-assemblies coupled with single mRNA imaging. Tightly repressed mRNAs self-assembled into same-sequence nanoclusters that further co-assembled into multiphase condensates. mRNA self-sorting was concentration dependent, providing a self-buffering mechanism that is selective to sequence identity and controls mRNA:mRNA stoichiometries. The cooperative sharing of limiting translation repressors between clustered mRNAs prevented the disruption of mRNA:repressor stoichiometries in the cytosol. Robust control of mRNA:mRNA and mRNA:protein stoichiometries emerges from mRNA self-demixing and cooperative super-assembly into multiphase multiscale condensates with dynamic storage capacity.


Assuntos
Condensados Biomoleculares , Caenorhabditis elegans , RNA Mensageiro , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Oogênese , Biossíntese de Proteínas , Transporte de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas/química , Proteínas/metabolismo , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo
2.
Hum Mol Genet ; 30(5): 343-355, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33527138

RESUMO

Sexual dimorphism in cancer incidence and outcome is widespread. Understanding the underlying mechanisms is fundamental to improve cancer prevention and clinical management. Sex disparities are particularly striking in kidney cancer: across diverse populations, men consistently show unexplained 2-fold increased incidence and worse prognosis. We have characterized genome-wide expression and regulatory networks of 609 renal tumors and 256 non-tumor renal tissues. Normal kidney displayed sex-specific transcriptional signatures, including higher expression of X-linked tumor suppressor genes in women. Sex-dependent genotype-phenotype associations unraveled women-specific immune regulation. Sex differences were markedly expanded in tumors, with male-biased expression of key genes implicated in metabolism, non-malignant diseases with male predominance and carcinogenesis, including markers of tumor infiltrating leukocytes. Analysis of sex-dependent RCC progression and survival uncovered prognostic markers involved in immune response and oxygen homeostasis. In summary, human kidney tissues display remarkable sexual dimorphism at the molecular level. Sex-specific transcriptional signatures further shape renal cancer, with relevance for clinical management.


Assuntos
Carcinoma de Células Renais/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Neoplasias Renais/genética , Caracteres Sexuais , Idoso , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/metabolismo , Progressão da Doença , Feminino , Genes Supressores de Tumor , Genes Ligados ao Cromossomo X , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico
3.
Traffic ; 20(9): 697-711, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31314165

RESUMO

Stress granules (SGs) are macromolecular assemblies induced by stress and composed of proteins and mRNAs stalled in translation initiation. SGs play an important role in the response to stress and in the modulation of signaling pathways. Furthermore, these structures are related to the pathological ribonucleoprotein (RNP) aggregates found in neurodegenerative disease contexts, highlighting the need to understand how they are formed and recycled in normal and pathological contexts. Although genetically tractable multicellular organisms have been key in identifying modifiers of RNP aggregate toxicity, in vivo analysis of SG properties and regulation has lagged behind, largely due to the difficulty of detecting SG from images of intact tissues. Here, we describe the object detector software Obj.MPP and show how it overcomes the limits of classical object analyzers to extract the properties of SGs from wide-field and confocal images of Caenorhabditis elegans and Drosophila tissues, respectively. We demonstrate that Obj.MPP enables the identification of genes modulating the assembly of endogenous and pathological SGs, and thus that it will be useful in the context of future genetic screens and in vivo studies.


Assuntos
Grânulos Citoplasmáticos/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Software , Estresse Fisiológico , Animais , Caenorhabditis elegans , Grânulos Citoplasmáticos/metabolismo , Drosophila melanogaster , Processamento de Imagem Assistida por Computador/normas , Limite de Detecção , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Imagem Óptica/métodos , Ribonucleoproteínas/metabolismo
4.
Exp Dermatol ; 29(1): 39-50, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31602702

RESUMO

Tumor cell invasion is one of the key processes during cancer progression, leading to life-threatening metastatic lesions in melanoma. As methylation of cancer-related genes plays a fundamental role during tumorigenesis and may lead to cellular plasticity which promotes invasion, our aim was to identify novel epigenetic markers on selected invasive melanoma cells. Using Illumina BeadChip assays and Affymetrix Human Gene 1.0 microarrays, we explored the DNA methylation landscape of selected invasive melanoma cells and examined the impact of DNA methylation on gene expression patterns. Our data revealed predominantly hypermethylated genes in the invasive cells affecting the neural crest differentiation pathway and regulation of the actin cytoskeleton. Integrative analysis of the methylation and gene expression profiles resulted in a cohort of hypermethylated genes (IL12RB2, LYPD6B, CHL1, SLC9A3, BAALC, FAM213A, SORCS1, GPR158, FBN1 and ADORA2B) with decreased expression. On the other hand, hypermethylation in the gene body of the EGFR and RBP4 genes was positively correlated with overexpression of the genes. We identified several methylation changes that can have role during melanoma progression, including hypermethylation of the promoter regions of the ARHGAP22 and NAV2 genes that are commonly altered in locally invasive primary melanomas as well as during metastasis. Interestingly, the down-regulation of the methylcytosine dioxygenase TET2 gene, which regulates DNA methylation, was associated with hypermethylated promoter region of the gene. This can probably lead to the observed global hypermethylation pattern of invasive cells and might be one of the key changes during the development of malignant melanoma cells.


Assuntos
Metilação de DNA , Melanoma/genética , Melanoma/secundário , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Dioxigenases , Epigênese Genética , Proteínas Ativadoras de GTPase/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica , Humanos , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Fenótipo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética
5.
Tumour Biol ; 36(10): 7841-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25944164

RESUMO

It was shown that osteopontin (OPN), a glycophosphoprotein, plays divergent roles in cancer progression. In addition to multiple intra- and extracellular functions, it facilitates migration of tumour cells, has crucial role in cell adhesion and is associated with increased metastasis formation. In previous studies, we performed global gene expression profiling on a series of primary melanoma samples and found that OPN was significantly overexpressed in ulcerated melanomas. The major purpose of this study was to define OPN expression in primary melanomas with differing biological behaviours. OPN mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) in primary melanoma tissues. Immunohistochemistry was performed using a tissue microarray. Cox regression tests were used for survival analysis. Greater than 50 % of the tissues exhibited high protein expression that was significantly associated with tumour thickness and metastasis. OPN mRNA expression was significantly increased in thicker melanomas and lesions with an ulcerated surface. Increased expression was primarily detected in advanced-stage tumours. A multivariate Cox regression analysis revealed that high OPN expression, tumour thickness and metastasis were significantly associated with reduced relapse-free survival. In summary, high OPN mRNA and protein expression were associated with a less favourable clinical outcome of primary melanoma patients. We determined that OPN is a significant predictive factor for the survival of primary melanoma patients. Based on our and others data, the high expression of OPN may have a crucial stimulatory role in tumour progression and metastasis formation, which, thus, have been proposed as potential targets for cancer diagnosis and therapy.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Osteopontina/genética , Adulto , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Masculino , Melanoma/metabolismo , Melanoma/mortalidade , Melanoma/patologia , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Osteopontina/metabolismo , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Adulto Jovem
6.
Magy Onkol ; 59(4): 275-81, 2015 Dec.
Artigo em Húngaro | MEDLINE | ID: mdl-26665186

RESUMO

Melanoma research has a two decade history in Hungary and is based on three groups located at the National Institute of Oncology (NIO), the University of Debrecen (DU) and Semmelweis University (SU). Previously we have summarized the achievements of the NIO group in this Journal, now this paper summarizes the recent results of their collaborations. The research group of DU revealed several novel genetic alterations in the melanoma genome which might have clinical relevance as prognosticators or predictors in light of the novel target therapies. Data indicating unique, perhaps melanoma-specific epigenetic changes during progression might be even more important, identifying novel genes otherwise not detected as genetically altered ones. The research group in Budapest extensively used experimental human melanoma models and demonstrated the host sex as a key factor in progression due to the specific function of NK cells. Identification of functional glucocorticoid receptor in human melanoma might lead to therapeutic exploitation similar to certain leukemias. Studies on extracellular matrix revealed collagen XVII and CD44 splice variants as progression associated factors of melanoma. Since the double wild type genotype of melanoma is lacking effective therapy, data on the use of FGFR2, c-met or cannabinoid receptor as target can be important. On the other hand, experimental data on the antitumoral effects of heparin derivatives or bisphosphonate in melanoma models can also be encouraging.

7.
Tumour Biol ; 33(6): 2189-99, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23001925

RESUMO

It is well demonstrated that CCND1 amplification is a frequent event in the acral subtype of cutaneous malignant melanoma; however, its role in the other subtypes of the disease is still controversial. The objectives of this study were to evaluate genetic and expression alterations of CCND1 with a focus on primary cutaneous melanomas, to define BRAF and NRAS mutation status, and correlate the data with clinical-pathological parameters. CCND1 amplification was associated with ulceration and the localization of the metastasis. After correction for the mutation state of BRAF and NRAS genes, CCND1 amplification in samples without such mutations was associated with ulceration and sun exposure. The cyclin D1 (CCND1) mRNA level decreased in lesions with multiple metastases and was correlated with both the mRNA levels and mutation state of BRAF and NRAS genes. Primary melanomas with BRAF(V600) or NRAS(Q61 ) mutations exhibited lower CCND1 mRNA level. CCND1 protein expression was associated with Breslow thickness, metastasis formation, and shorter survival time. These observations suggest that CCND1 alterations are linked to melanoma progression and are modified by BRAF and NRAS mutations. Our data show that CCND1 amplification could have a prognostic relevance in cutaneous melanoma and highlight that altered CCND1 gene expression may influence the metastatic progression, survival, and the localization of metastases.


Assuntos
Ciclina D1/genética , Genes ras/genética , Melanoma/genética , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Adulto , Hibridização Genômica Comparativa , Progressão da Doença , Feminino , Seguimentos , Humanos , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Metástase Linfática , Masculino , Melanoma/mortalidade , Melanoma/secundário , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Taxa de Sobrevida , Adulto Jovem
8.
Sci Rep ; 10(1): 7822, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385352

RESUMO

A basic question linked to differential patterns of gene expression is how cells reach different fates despite using the same DNA template. Since 5-hydroxymethylcytosine (5hmC) emerged as an intermediate metabolite in active DNA demethylation, there have been increasing efforts to elucidate its function as a stable modification of the genome, including a role in establishing such tissue-specific patterns of expression. Recently we described TET1-mediated enrichment of 5hmC on the promoter region of the master regulator of hepatocyte identity, HNF4A, which precedes differentiation of liver adult progenitor cells in vitro. Here, we studied the genome-wide distribution of 5hmC at early in vitro differentiation of human hepatocyte-like cells. We found a global increase in 5hmC as well as a drop in 5-methylcytosine after one week of in vitro differentiation from bipotent progenitors, at a time when the liver transcript program is already established. 5hmC was overall higher at the bodies of overexpressed genes. Furthermore, by modifying the metabolic environment, an adenosine derivative prevents 5hmC enrichment and impairs the acquisition of hepatic identity markers. These results suggest that 5hmC could be a marker of cell identity, as well as a useful biomarker in conditions associated with cell de-differentiation such as liver malignancies.


Assuntos
5-Metilcitosina/análogos & derivados , Diferenciação Celular/genética , Metilação de DNA/genética , Fator 4 Nuclear de Hepatócito/genética , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , 5-Metilcitosina/metabolismo , Desmetilação do DNA , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , Hepatócitos/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , Células-Tronco/metabolismo
9.
Mod Pathol ; 22(10): 1367-78, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19633643

RESUMO

Amplification of the 11q13 chromosomal region is a common event in primary melanomas. Several candidate genes are localized at this sequence; however, their role in melanoma has not been clearly defined. The aim of this study was to develop an accurate method for determining the amplification pattern of six candidate genes that map to this amplicon core and to elucidate the possible relationship between BRAF, NRAS mutations and CCND1 copy number alterations, all of which are key components of the MAP kinase pathway. Characterization of gene copy numbers was performed by quantitative PCR and, as an alternative method, fluorescence in situ hybridization was used to define the CCND1 amplification pattern at the single cell level. Samples with amplified CCND1 (32%) were further analyzed for copy number alterations for the TAOS1, FGF3, FGF19, FGF4 and EMS1 genes. Co-amplification of the CCND1 and TAOS1 was present in 15% of tumors and was more frequent in ulcerated lesions (P=0.017). Furthermore, 56% of primary melanomas had either BRAF or NRAS mutations, but these two mutations were not present in any of the lesions analyzed. Of these cases, 34% also had CCND1 amplification. There was a significant relationship between NRAS activating mutations and UV exposure (P=0.005). We did not find correlations between CCND1 gene amplification status and any of the patients' clinicopathological parameters. However, CCND1 amplification simultaneously with either BRAF or NRAS activation mutations was observed mainly in primary tumors with ulcerated surfaces (P=0.028). We assume that co-amplification of these candidate genes in the 11q13 region or CCND1 gene alterations along with either BRAF or NRAS mutations might be more important for prognosis than the presence of these alterations alone.


Assuntos
Cromossomos Humanos Par 11 , Amplificação de Genes , Dosagem de Genes , Genes ras , Estudos de Associação Genética , Melanoma/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Adulto , Cortactina/genética , Ciclina D1/genética , Feminino , Fator 3 de Crescimento de Fibroblastos/genética , Fator 4 de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/genética , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética/métodos , Humanos , Hibridização in Situ Fluorescente , Masculino , Melanoma/secundário , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase , Prognóstico , Reprodutibilidade dos Testes , Neoplasias Cutâneas/secundário , Adulto Jovem
10.
Sci Rep ; 9(1): 1298, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718669

RESUMO

The Human Leucocyte Antigen (HLA) locus and other DNA sequence variants identified in Genome-Wide Association (GWA) studies explain around 50% of the heritability of celiac disease (CD). However, the pathogenesis of CD could be driven by other layers of genomic information independent from sequence variation, such as DNA methylation, and it is possible that allele-specific methylation explains part of the SNP associations. Since the DNA methylation landscape is expected to be different among cell types, we analyzed the methylome of the epithelial and immune cell populations of duodenal biopsies in CD patients and controls separately. We found a cell type-specific methylation signature that includes genes mapping to the HLA region, namely TAP1 and HLA-B. We also performed Immunochip SNP genotyping of the same samples and interrogated the expression of some of the affected genes. Our analysis revealed that the epithelial methylome is characterized by the loss of CpG island (CGI) boundaries, often associated to altered gene expression, and by the increased variability of the methylation across the samples. The overlap between differentially methylated positions (DMPs) and CD-associated SNPs or variants contributing to methylation quantitative trait loci (mQTLs) is minimal. In contrast, there is a notable enrichment of mQTLs among the most significant CD-associated SNPs. Our results support the notion that DNA methylation alterations constitute a genotype-independent event and confirm its role in the HLA region (apart from the well-known, DQ allele-specific effect). Finally, we find that a fraction of the CD-associated variants could exert its phenotypic effect through DNA methylation.


Assuntos
Doença Celíaca/etiologia , Metilação de DNA , Epigenoma , Genótipo , Antígenos HLA/genética , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Biópsia , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Ilhas de CpG , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Antígenos HLA/imunologia , Humanos , Mucosa Intestinal/patologia , Masculino , Regiões Promotoras Genéticas
11.
Cancer Genet Cytogenet ; 182(2): 116-21, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18406873

RESUMO

Alteration of the CDKN2A (alias p16) tumor suppressor gene, located on 9p21, occurs frequently in familial and sporadic melanomas. Beside CDKN2A, other genes (e.g., CDKN2B, and ARF/p14(ARF), long considered distinct from CDKN2A) on this locus are often deleted or mutated in a large number of tumors including glioma, bladder cancer, and lung cancer. The aim of this study was to evaluate the deletion pattern of the 9p21 locus on a cell-by-cell basis in a large number of melanoma samples using fluorescence in situ hybridization (FISH). In an analysis of 81 primary lesions targeting the 9p21 region and chromosome 9 centromere, high frequency of 9p21 loss (84%) was found. Deletion of 9p21 was present in both early- and late-stage melanomas with similar frequencies. Extra 9p21 copies were rarely seen; they were always associated with polysomy 9 and were observed only in advanced stage melanomas (6 tumors). This FISH study strengthens the hypothesis that the loss of 9p21 occurs frequently in primary melanoma, that the deletion is present in early and late stages of the disease with similar frequency, and that it affects a large extent of the locus.


Assuntos
Cromossomos Humanos Par 9/genética , Dosagem de Genes , Hibridização in Situ Fluorescente , Melanoma/genética , Neoplasias Cutâneas/genética , Adulto , Feminino , Genes Supressores de Tumor , Humanos , Masculino , Pessoa de Meia-Idade
12.
Otolaryngol Head Neck Surg ; 139(5): 635-40, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18984256

RESUMO

OBJECTIVES: Our aim was to evaluate the copy number alterations of chromosomes 3, 7, 8, and 17 in middle ear cholesteatomas and define the association between the rate of cell proliferation and chromosome number changes. METHODS: Tissues were obtained from 16 patients. Fluorescence in situ hybridization was performed on tumor imprint preparations. Cell proliferation was characterized with Ki-67 monoclonal antibody on cholesteatoma samples and on postauricular skins as control. RESULTS: Different degrees of aneusomy were found for all chromosomes except for chromosome 3. Chromosome copy number alterations were associated with elevated proliferative rate and related also with the aggressiveness of the lesions. CONCLUSIONS: Based on our results, we assume that aneusomy of chromosomes 7, 8, and 17 might play an important role during invasion of the adjacent bony structures of cholesteatoma, as well as associate with increased cell proliferation activity, which might lead to the aggressive behavior of the tissue.


Assuntos
Aneuploidia , Colesteatoma da Orelha Média/genética , Colesteatoma da Orelha Média/patologia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Proliferação de Células , Criança , Colesteatoma da Orelha Média/metabolismo , Estudos de Coortes , Feminino , Humanos , Hibridização in Situ Fluorescente , Interfase , Antígeno Ki-67/metabolismo , Masculino , Processo Mastoide/patologia , Pessoa de Meia-Idade , Invasividade Neoplásica
13.
Methods Mol Biol ; 1726: 85-100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29468546

RESUMO

It is well known that chromosomal aberrations of tumors are associated with the initiation and progression of malignancy. Fluorescence in situ hybridization (FISH) is a powerful, rapid method to detect chromosome copy number and structural alterations in tissue sections, chromosome, or interphase cellular preparations via hybridization of complementary probe sequences. The technique is based on the complementary nature of DNA double strands, which allows fluorescently labeled DNA probes to be used as probes to label the complementary sequences of target cells, chromosomes, and tissues. FISH technique has many applications, including basic gene mapping, used in pathological diagnosis to detect chromosome and gene copy number aberrations, translocations, microdeletions, and duplications. For the recognition of gene amplifications and deletions, locus-specific probes that are collections of one or a few cloned DNA sequences are routinely used. Multiplex-FISH (M-FISH) technique visualizes all chromosomes with different colors using spectrally distinct fluorophores for each chromosome in one experiment to detect numerical and structural alterations of chromosomes obtained from tumor cells. Recently many of the gene-specific probes are commercially available.


Assuntos
Aberrações Cromossômicas , Ciclina D1/genética , Sondas de DNA/química , Amplificação de Genes , Hibridização in Situ Fluorescente/métodos , Neoplasias/diagnóstico , Humanos , Neoplasias/genética
14.
Melanoma Res ; 27(3): 180-188, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28234767

RESUMO

A large variety of molecular pathways in melanoma progression suggests that no individual molecular alteration is crucial in itself. Our aim was to define the molecular alterations underlying metastasis formation. Gene expression profiling was performed using microarray and qRT-PCR to define alterations between matched primary and metastatic melanoma cell lines. These data were integrated with publicly available unmatched tissue data. The invasiveness of cell lines was determined by Matrigel invasion assays and invasive clones from primary melanoma-derived cell lines were also selected. Two metastatic cell line models were created: the regional lymph node WM983A-WM983A-WM983B and the distant lung WM793B-WM793B-1205Lu metastatic models. The majority of metastasis genes were downregulated and enriched in adhesion and ITGA6-B4 pathways. Upregulation of immune pathways was characteristic of distant metastases, whereas increased Rap1 signaling was specific for regional (sub)cutaneous metastases. qRT-PCR analysis of selected integrins (A2, A3, A4, A9, B5, B8, A6, B1, and B3) highlighted the possible importance of ITGA3/4 and B8 in the metastatic process, distinguishing regional and distant metastases. We identified functionally relevant gene clusters that influenced metastasis formation. Our data provide further evidence that integrin expression patterns may be important in distant metastasis formation.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Integrinas/genética , Melanoma/genética , Neoplasias Cutâneas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proliferação de Células , Criança , Progressão da Doença , Feminino , Seguimentos , Humanos , Metástase Linfática , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Prognóstico , Neoplasias Cutâneas/secundário , Células Tumorais Cultivadas
15.
Epigenetics ; 12(11): 964-972, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29099283

RESUMO

Breast cancer (BC) encompasses heterogeneous pathologies with different subtypes exhibiting distinct molecular changes, including those related to DNA methylation. However, the role of these changes in mediating BC heterogeneity is poorly understood. Lowly methylated regions (LMRs), non-CpG island loci that usually contain transcription factor (TF) binding sites, have been suggested to act as regulatory elements that define cellular identity. In this study, we aimed to identify the key subtype-specific TFs that may lead to LMR generation and shape the BC methylome and transcription program. We initially used whole-genome bisulfite sequencing (WGBS) data available at The Cancer Genome Atlas (TCGA) portal to identify subtype-specific LMRs. Differentially methylated regions (DMRs) within the BC PAM50 subtype-specific LMRs were selected by comparing tumors and normal tissues in a larger TCGA cohort assessed by HumanMethylation450 BeadChip (450K) arrays and TF enrichment analyses were performed. To assess the impact of LMRs on gene expression, TCGA RNA sequencing data were downloaded and Pearson correlations between methylation levels of loci presenting subtype-specific TF motifs and expression of the nearest genes were calculated. WGBS methylome data revealed a large number of LMRs for each of the BC subtypes. Analysis of these LMRs in the 450K datasets available for a larger sample set identified 7,765, 5,657, and 19 differentially methylated positions (DMPs) between normal adjacent tissues and tumor tissues from basal, luminal, and HER2-enriched subtypes, respectively. Unsupervised clustering showed that the discriminatory power of the top DMPs was remarkably strong for basal BC. Interestingly, in this particular subtype, we found 4,409 differentially hypomethylated positions grouped into 1,185 DMRs with a strong enrichment for the early B-cell factor 1 (EBF1) motifs. The methylation levels of the DMRs containing EBF1 motifs showed a strong negative correlation with the expression of 719 nearby genes, including BTS2 and CD74, two oncogenes known to be specific for basal BC subtype and for poor outcome. This study identifies LMRs specific to the three main BC subtypes and reveals EBF1 as a potentially important regulator of BC subtype-specific methylation and gene expression program.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA , Epigênese Genética , Genes Modificadores , Transativadores/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos
16.
Stem Cell Reports ; 9(1): 264-278, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28648900

RESUMO

Understanding the processes that govern liver progenitor cell differentiation has important implications for the design of strategies targeting chronic liver diseases, whereby regeneration of liver tissue is critical. Although DNA methylation (5mC) and hydroxymethylation (5hmC) are highly dynamic during early embryonic development, less is known about their roles at later stages of differentiation. Using an in vitro model of hepatocyte differentiation, we show here that 5hmC precedes the expression of promoter 1 (P1)-dependent isoforms of HNF4A, a master transcription factor of hepatocyte identity. 5hmC and HNF4A expression from P1 are dependent on ten-eleven translocation (TET) dioxygenases. In turn, the liver pioneer factor FOXA2 is necessary for TET1 binding to the P1 locus. Both FOXA2 and TETs are required for the 5hmC-related switch in HNF4A expression. The epigenetic event identified here may be a key step for the establishment of the hepatocyte program by HNF4A.


Assuntos
Diferenciação Celular , Metilação de DNA , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/citologia , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Células-Tronco/citologia , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Linhagem Celular , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Hepatócitos/metabolismo , Humanos , Regiões Promotoras Genéticas , Células-Tronco/metabolismo
17.
Genome Med ; 9(1): 33, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28381277

RESUMO

BACKGROUND: Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of cancers for which human papilloma virus (HPV) infection is an emerging risk factor. Previous studies showed promoter hypermethylation in HPV(+) oropharyngeal cancers, but only few consistent target genes have been so far described, and the evidence of a functional impact on gene expression is still limited. METHODS: We performed global and stratified pooled analyses of epigenome-wide data in HNSCCs based on the Illumina HumanMethylation450 bead-array data in order to identify tissue-specific components and common viral epigenetic targets in HPV-associated tumours. RESULTS: We identified novel differentially methylated CpGs and regions associated with viral infection that are independent of the anatomic site. In particular, most hypomethylated regions were characterized by a marked loss of CpG island boundaries, which showed significant correlations with expression of neighbouring genes. Moreover, a subset of only five CpGs in a few hypomethylated regions predicted HPV status with a high level of specificity in different cohorts. Finally, this signature was a better predictor of survival compared with HPV status determined by viral gene expression by RNA sequencing in The Cancer Genome Atlas cohort. CONCLUSIONS: We identified a novel epigenetic signature of HPV infection in HNSCCs which is independent of the anatomic site, is functionally correlated with gene expression and may be leveraged for improved stratification of prognosis in HNSCCs.


Assuntos
Carcinoma de Células Escamosas/genética , Metilação de DNA , Neoplasias de Cabeça e Pescoço/genética , Infecções por Papillomavirus/complicações , Regiões Promotoras Genéticas , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/metabolismo , Ilhas de CpG , Feminino , Regulação da Expressão Gênica , Genoma Humano , Neoplasias de Cabeça e Pescoço/etiologia , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Escamosas de Cabeça e Pescoço , Adulto Jovem
18.
Melanoma Res ; 26(2): 100-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26656572

RESUMO

Malignant melanoma is one of the most aggressive human cancers. Invasion of cells is the first step in metastasis, resulting in cell migration through tissue compartments. We aimed to evaluate genomic alterations specifically associated with the invasive characteristics of melanoma cells. Matrigel invasion assays were used to determine the invasive properties of cell lines that originated from primary melanomas. Array comparative genomic hybridization analyses were carried out to define the chromosome copy number alterations (CNAs). Several recurrent CNAs were identified by array comparative genomic hybridization that affected melanoma-related genes. Invasive primary cell lines showed high frequencies of CNAs, including the loss of 7q and gain of 12q chromosomal regions targeting PTPN12, ADAM22, FZD1, TFPI2, GNG11, COL1A2, SMURF1, VGF, RELN and GLIPR1 genes. Gain of the GDNF (5p13.1), GPAA1, PLEC and SHARPIN (8q24.3) genes was significantly more frequent in invasive cell lines compared with the noninvasive ones. Importantly, copy number gains of these genes were also found in cell lines that originated from metastases, suggesting their role in melanoma metastasis formation. The present study describes genomic differences between invasive and noninvasive melanoma cell lines that may contribute toward the aggressive phenotype of human melanoma cells.


Assuntos
Melanoma/genética , Neoplasias Cutâneas/genética , Linhagem Celular Tumoral , Hibridização Genômica Comparativa/métodos , Perfilação da Expressão Gênica , Genômica , Humanos , Proteína Reelina
19.
PLoS One ; 9(5): e96612, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24832207

RESUMO

In melanoma, the presence of promoter related hypermethylation has previously been reported, however, no methylation-based distinction has been drawn among the diverse melanoma subtypes. Here, we investigated DNA methylation changes associated with melanoma progression and links between methylation patterns and other types of somatic alterations, including the most frequent mutations and DNA copy number changes. Our results revealed that the methylome, presenting in early stage samples and associated with the BRAF(V600E) mutation, gradually decreased in the medium and late stages of the disease. An inverse relationship among the other predefined groups and promoter methylation was also revealed except for histologic subtype, whereas the more aggressive, nodular subtype melanomas exhibited hypermethylation as well. The Breslow thickness, which is a continuous variable, allowed for the most precise insight into how promoter methylation decreases from stage to stage. Integrating our methylation results with a high-throughput copy number alteration dataset, local correlations were detected in the MYB and EYA4 genes. With regard to the effects of DNA hypermethylation on melanoma patients' survival, correcting for clinical cofounders, only the KIT gene was associated with a lower overall survival rate. In this study, we demonstrate the strong influence of promoter localized DNA methylation changes on melanoma initiation and show how hypermethylation decreases in melanomas associated with less favourable clinical outcomes. Furthermore, we establish the methylation pattern as part of an integrated apparatus of somatic DNA alterations.


Assuntos
Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Neoplasias Cutâneas/genética , Adulto , Hibridização Genômica Comparativa , Progressão da Doença , Feminino , Dosagem de Genes , Humanos , Hibridização in Situ Fluorescente , Masculino , Melanoma/metabolismo , Melanoma/mortalidade , Pessoa de Meia-Idade , Mutação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/mortalidade , Resultado do Tratamento , Adulto Jovem
20.
Int J Clin Exp Pathol ; 6(12): 2943-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24294382

RESUMO

Despite the strong progress has been made in the field of melanoma epigenetics, the importance of genome-wide demethylation or hypomethylation remains underestimated. However, this phenomenon might also reflect important epigenetic alterations due to its ability to cause genetic instability. Furthermore, no methylation-based distinction has been drawn among the diverse primary melanoma subtypes. To assess global methylation we measured the methylation level on the 6 CpG sites of LINE1 sequences in 46 primary melanomas in association with patients' survivals and the clinicopathological characteristics of specimens. We demonstrate that LINE1 hypomethylation is accompanied by the shortened relapse-free survival of melanoma patients; however, Cox regression analysis shows a direct relationship between the overall loss of 5-methylcytosine and metastatic potential of primary melanomas, which is confirmed by Kruskal-Wallis tests with Dunn's Multiple Comparison Post-test showing that not only the presence but the number of metastases during the 5-year follow-up period is associated with the transposon demethylation. In this study, we demonstrate the strong influence of global DNA demethylation in the metastatic formation of primary melanomas during the follow-up period.


Assuntos
Metilação de DNA , Elementos de DNA Transponíveis , Epigênese Genética , Melanoma/genética , Melanoma/secundário , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , 5-Metilcitosina/análise , Adulto , Ilhas de CpG , Progressão da Doença , Intervalo Livre de Doença , Feminino , Predisposição Genética para Doença , Humanos , Estimativa de Kaplan-Meier , Elementos Nucleotídeos Longos e Dispersos , Masculino , Melanoma/mortalidade , Melanoma/terapia , Pessoa de Meia-Idade , Fenótipo , Modelos de Riscos Proporcionais , Fatores de Risco , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/terapia , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa