Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Brain ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38964748

RESUMO

Early pathological upregulation of adenosine A2A receptors (A2ARs), one of the caffeine targets, by neurons is thought to be involved in the development of synaptic and memory deficits in Alzheimer's disease (AD) but mechanisms remain ill-defined. To tackle this question, we promoted a neuronal upregulation of A2AR in the hippocampus of APP/PS1 mice developing AD-like amyloidogenesis. Our findings revealed that the early upregulation of A2AR in the presence of an ongoing amyloid pathology exacerbates memory impairments of APP/PS1 mice. These behavioural changes were not linked to major change in the development of amyloid pathology but rather associated with increased phosphorylated tau at neuritic plaques. Moreover, proteomic and transcriptomic analyses coupled with quantitative immunofluorescence studies indicated that neuronal upregulation of the receptor promoted both neuronal and non-neuronal autonomous alterations, i.e. enhanced neuroinflammatory response but also loss of excitatory synapses and impaired neuronal mitochondrial function, presumably accounting for the detrimental effect on memory. Overall, our results provide compelling evidence that neuronal A2AR dysfunction, as seen in the brain of patients, contributes to amyloid-related pathogenesis and underscores the potential of A2AR as a relevant therapeutic target for mitigating cognitive impairments in this neurodegenerative disorder.

2.
Mol Ther ; 30(4): 1484-1499, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35007758

RESUMO

Tau proteins aggregate into filaments in brain cells in Alzheimer's disease and related disorders referred to as tauopathies. Here, we used fragments of camelid heavy-chain-only antibodies (VHHs or single domain antibody fragments) targeting Tau as immuno-modulators of its pathologic seeding. A VHH issued from the screen against Tau of a synthetic phage-display library of humanized VHHs was selected for its capacity to bind Tau microtubule-binding domain, composing the core of Tau fibrils. This parent VHH was optimized to improve its biochemical properties and to act in the intra-cellular compartment, resulting in VHH Z70. VHH Z70 precisely binds the PHF6 sequence, known for its nucleation capacity, as shown by the crystal structure of the complex. VHH Z70 was more efficient than the parent VHH to inhibit in vitro Tau aggregation in heparin-induced assays. Expression of VHH Z70 in a cellular model of Tau seeding also decreased the aggregation-reporting fluorescence signal. Finally, intra-cellular expression of VHH Z70 in the brain of an established tauopathy mouse seeding model demonstrated its capacity to mitigate accumulation of pathological Tau. VHH Z70, by targeting Tau inside brain neurons, where most of the pathological Tau resides, provides an immunological tool to target the intra-cellular compartment in tauopathies.


Assuntos
Doença de Alzheimer , Anticorpos de Domínio Único , Tauopatias , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Neurônios/metabolismo , Proteínas Repressoras , Tauopatias/metabolismo , Proteínas tau/genética
3.
Mov Disord ; 37(8): 1761-1767, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35708213

RESUMO

BACKGROUND: Pathogenic variants in the LRRK2 gene are a common monogenic cause of Parkinson's disease. However, only seven variants have been confirmed to be pathogenic. OBJECTIVES: We identified two novel LRRK2 variants (H230R and A1440P) and performed functional testing. METHODS: We transiently expressed wild-type, the two new variants, or two known pathogenic mutants (G2019S and R1441G) in HEK-293 T cells, with or without LRRK2 kinase inhibitor treatment. We characterized the phosphorylation and kinase activity of the mutants by western blotting. Thermal shift assays were performed to determine the folding and stability of the LRRK2 proteins. RESULTS: The two variants were found in two large families and segregate with the disease. They display altered LRRK2 phosphorylation and kinase activity. CONCLUSIONS: We identified two novel LRRK2 variants which segregate with the disease. The results of functional testing lead us to propose these two variants as novel causative mutations for familial Parkinson's disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteínas Serina-Treonina Quinases/genética
4.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743295

RESUMO

Alzheimer's disease is the most frequent form of dementia in aging population and is presently the world's sixth largest cause of mortality. With the advancement of therapies, several solutions have been developed such as passive immunotherapy against these misfolded proteins, thereby resulting in the clearance. Within this segment, encapsulated cell therapy (ECT) solutions that utilize antibody releasing cells have been proposed with a multitude of techniques under development. Hence, in this study, we utilized our novel and patented Microtube Array Membranes (MTAMs) as an encapsulating platform system with anti-pTau antibody-secreting hybridoma cells to study the impact of it on Alzheimer's disease. In vivo results revealed that in the water maze, the mice implanted with hybridoma cell MTAMs intracranially (IN) and subcutaneously (SC) showed improvement in the time spent the goal quadrant and escape latency. In passive avoidance, hybridoma cell loaded MTAMs (IN and SC) performed significantly well in step-through latency. At the end of treatment, animals with hybridoma cell loaded MTAMs had lower phosphorylated tau (pTau) expression than empty MTAMs had. Combining both experimental results unveiled that the clearance of phosphorylated tau might rescue the cognitive impairment associated with AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Terapia Baseada em Transplante de Células e Tecidos , Imunização Passiva , Camundongos , Tecnologia , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Cerebellum ; 19(3): 358-369, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32002801

RESUMO

A variety of missense mutations and a stop mutation in the gene coding for transmembrane protein 240 (TMEM240) have been reported to be the causative mutations of spinocerebellar ataxia 21 (SCA21). We aimed to investigate the expression of TMEM240 protein in mouse brain at the tissue, cellular, and subcellular levels. Immunofluorescence labeling showed TMEM240 to be expressed in various areas of the brain, with the highest levels in the hippocampus, isocortex, and cerebellum. In the cerebellum, TMEM240 was detected in the deep nuclei and the cerebellar cortex. The protein was expressed in all three layers of the cortex and various cerebellar neurons. TMEM240 was localized to climbing, mossy, and parallel fiber afferents projecting to Purkinje cells, as shown by co-immunostaining with VGLUT1 and VGLUT2. Co-immunostaining with synaptophysin, post-synaptic fractionation, and confirmatory electron microscopy showed TMEM240 to be localized to the post-synaptic side of synapses near the Purkinje-cell soma. Similar results were obtained in human cerebellar sections. These data suggest that TMEM240 may be involved in the organization of the cerebellar network, particularly in synaptic inputs converging on Purkinje cells. This study is the first to describe TMEM240 expression in the normal mouse brain.


Assuntos
Proteínas de Membrana/biossíntese , Mutação/fisiologia , Terminações Pré-Sinápticas/metabolismo , Células de Purkinje/metabolismo , Degenerações Espinocerebelares/metabolismo , Adulto , Idoso , Animais , Cerebelo/metabolismo , Cerebelo/patologia , Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Terminações Pré-Sinápticas/ultraestrutura , Células de Purkinje/ultraestrutura , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/patologia , Adulto Jovem
6.
Horm Behav ; 124: 104807, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32544401

RESUMO

Anorexia nervosa (AN) is an eating disorder characterized by excessive weight loss, persistent food restriction and inappropriate physical activity relative to declining energy balance. The comorbidity with depression and/or anxiety disorders might contribute to the "chronicization" of the disease. We aimed here to question first the link between physical activity and anxiety from a clinical investigation of AN patients (n = 206). Then, using a rodent model mimicking numerous physiological and metabolic alterations commonly seen in AN patients, we examined whether 1) chronic food restriction increased anxiety-like behaviour and 2) physical activity plays a role in regulating anxiety levels. To this end, we exposed young female mice to a chronic food restriction (FR, n = 8) paradigm combined or not with access to a running wheel (FRW, n = 8) for two weeks. The mice were compared to a group of mice fed ad libitum without (AL, n = 6) or with running wheel access (ALW, n = 8). We explored anxiety-like behaviour of all mice in the following tests: hyponeophagia, marble burying, elevated plus maze, open field, and the light and dark box. On the last day, we used a restraint test of 30 min duration and measured their stress reactivity by assaying plasma corticosterone. In the open field and the elevated plus-maze, we found that FRW mice behaved similarly to AL and ALW mice whereas FR mice did not express anxiety-like behaviour. The FRW mice displayed the lowest latency to reach the food in the hyponeophagia test. Regarding stress reactivity, FRW mice exhibited corticosterone reactivity after acute stress that was similar to the control mice, while FR mice did not fully return to basal corticosterone at one hour after the restraint stress. Taken together, these data demonstrate a differential reactivity to acute stress in FR conditions and a beneficial effect of running wheel activity in ALW and FRW conditions. Moreover, we report the absence of a typical anxiety-like behaviour associated with the food restriction (FR and FRW groups). We conclude that this model (FR and FRW mice) did not express typical anxiety-like behaviour, but that physical activity linked to food restriction improved coping strategies in an anxiogenic context.


Assuntos
Ansiedade/prevenção & controle , Privação de Alimentos/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Anorexia Nervosa/sangue , Anorexia Nervosa/fisiopatologia , Anorexia Nervosa/psicologia , Ansiedade/sangue , Ansiedade/fisiopatologia , Ansiedade/psicologia , Comportamento Animal/fisiologia , Restrição Calórica , Corticosterona/sangue , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Restrição Física/psicologia , Estresse Psicológico/sangue , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Fatores de Tempo
7.
Brain ; 142(11): 3636-3654, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599329

RESUMO

Accumulating data support the role of tau pathology in cognitive decline in ageing and Alzheimer's disease, but underlying mechanisms remain ill-defined. Interestingly, ageing and Alzheimer's disease have been associated with an abnormal upregulation of adenosine A2A receptor (A2AR), a fine tuner of synaptic plasticity. However, the link between A2AR signalling and tau pathology has remained largely unexplored. In the present study, we report for the first time a significant upregulation of A2AR in patients suffering from frontotemporal lobar degeneration with the MAPT P301L mutation. To model these alterations, we induced neuronal A2AR upregulation in a tauopathy mouse model (THY-Tau22) using a new conditional strain allowing forebrain overexpression of the receptor. We found that neuronal A2AR upregulation increases tau hyperphosphorylation, potentiating the onset of tau-induced memory deficits. This detrimental effect was linked to a singular microglial signature as revealed by RNA sequencing analysis. In particular, we found that A2AR overexpression in THY-Tau22 mice led to the hippocampal upregulation of C1q complement protein-also observed in patients with frontotemporal lobar degeneration-and correlated with the loss of glutamatergic synapses, likely underlying the observed memory deficits. These data reveal a key impact of overactive neuronal A2AR in the onset of synaptic loss in tauopathies, paving the way for new therapeutic approaches.


Assuntos
Complemento C1q/metabolismo , Neurônios/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Sinapses/patologia , Tauopatias/genética , Tauopatias/patologia , Animais , Autopsia , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Camundongos , Camundongos Transgênicos , Mutação , Aprendizagem Espacial , Tauopatias/psicologia , Proteínas tau/genética
8.
Neurobiol Dis ; 129: 217-233, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30928644

RESUMO

Alzheimer's Disease is a devastating dementing disease involving amyloid deposits, neurofibrillary tangles, progressive and irreversible cognitive impairment. Today, only symptomatic drugs are available and therapeutic treatments, possibly acting at a multiscale level, are thus urgently needed. To that purpose, we designed multi-effects compounds by synthesizing drug candidates derived by substituting a novel N,N'-disubstituted piperazine anti-amyloid scaffold and adding acetylcholinesterase inhibition property. Two compounds were synthesized and evaluated. The most promising hybrid molecule reduces both the amyloid pathology and the Tau pathology as well as the memory impairments in a preclinical model of Alzheimer's disease. In vitro also, the compound reduces the phosphorylation of Tau and inhibits the release of Aß peptides while preserving the processing of other metabolites of the amyloid precursor protein. We synthetized and tested the first drug capable of ameliorating both the amyloid and Tau pathology in animal models of AD as well as preventing the major brain lesions and associated memory impairments. This work paves the way for future compound medicines against both Alzheimer's-related brain lesions development and the associated cognitive impairments.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/efeitos dos fármacos , Degeneração Neural/patologia , Fármacos Neuroprotetores/farmacologia , Piperazinas/farmacologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Placa Amiloide/patologia
9.
Neurobiol Dis ; 125: 14-22, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30665005

RESUMO

Accumulation of hyper-phosphorylated and aggregated Tau proteins is a neuropathological hallmark of Alzheimer's Disease (AD) and Tauopathies. AD patient brains also exhibit insulin resistance. Whereas, under normal physiological conditions insulin signaling in the brain mediates plasticity and memory formation, it can also regulate peripheral energy homeostasis. Thus, in AD, brain insulin resistance affects both cognitive and metabolic changes described in these patients. While a role of Aß oligomers and APOE4 towards the development of brain insulin resistance emerged, contribution of Tau pathology has been largely overlooked. Our recent data demonstrated that one of the physiological function of Tau is to sustain brain insulin signaling. We postulated that under pathological conditions, hyper-phosphorylated/aggregated Tau is likely to lose this function and to favor the development of brain insulin resistance. This hypothesis was substantiated by observations from patient brains with pure Tauopathies. To address the potential link between Tau pathology and brain insulin resistance, we have evaluated the brain response to insulin in a transgenic mouse model of AD-like Tau pathology (THY-Tau22). Using electrophysiological and biochemical evaluations, we surprisingly observed that, at a time when Tau pathology and cognitive deficits are overt and obvious, the hippocampus of THY-Tau22 mice exhibits enhanced response to insulin. In addition, we demonstrated that the ability of i.c.v. insulin to promote body weight loss is enhanced in THY-Tau22 mice. In line with this, THY-Tau22 mice exhibited a lower body weight gain, hypoleptinemia and hypoinsulinemia and finally a metabolic resistance to high-fat diet. The present data highlight that the brain of transgenic Tau mice exhibit enhanced brain response to insulin. Whether these observations are ascribed to the development of Tau pathology, and therefore relevant to human Tauopathies, or unexpectedly results from the Tau transgene overexpression is debatable and discussed.


Assuntos
Encéfalo/metabolismo , Insulina/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas tau/genética
10.
Cell Death Dis ; 15(5): 367, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806484

RESUMO

Mitochondria dysfunctions and mitophagy failure have been associated with several Alzheimer's disease (AD) related molecular actors including amyloid beta (Aß) and recently the amyloid precursor protein-C terminal fragments (APP-CTFs). The efficacy of the mitophagy process in neurons relies on regulated mitochondrial transport along axons involving a complex molecular machinery. The contribution of the amyloid precursor protein (APP) and its derived fragments to the mitochondrial transport machinery alterations in AD have not been investigated before. We report herein a change of the expression of mitochondrial transport proteins (SNPH and Miro1), motor adapters (TRANK1 and TRAK2), and components of the dynein and kinesin motors (i.e., IC1,2 and Kif5 (A, B, C) isoforms) by endogenous APP and by overexpression of APP carrying the familial Swedish mutation (APPswe). We show that APP-CTFs and Aß concomitantly regulate the expression of a set of transport proteins as demonstrated in APPswe cells treated with ß- and γ-secretase inhibitors and in cells Knock-down for presenilin 1 and 2. We further report the impact of APP-CTFs on the expression of transport proteins in AAV-injected C99 mice brains. Our data also indicate that both Aß oligomers (Aßo) and APP-CTFs impair the colocalization of mitochondria and transport proteins. This has been demonstrated in differentiated SH-SY5Y naive cells treated with Aßo and in differentiated SH-SY5Y and murine primary neurons expressing APPswe and treated with the γ-secretase inhibitor. Importantly, we uncover that the expression of a set of transport proteins is modulated in a disease-dependent manner in 3xTgAD mice and in human sporadic AD brains. This study highlights molecular mechanisms underlying mitochondrial transport defects in AD that likely contribute to mitophagy failure and disease progression.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Mitocôndrias , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Mitocôndrias/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Cinesinas/metabolismo , Transporte Biológico , Mitofagia , Proteínas do Tecido Nervoso , Proteínas rho de Ligação ao GTP , Peptídeos e Proteínas de Sinalização Intracelular
11.
J Biol Chem ; 286(18): 16435-46, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21454535

RESUMO

Muscleblind-like-1 (MBNL1) is a splicing regulatory factor controlling the fetal-to-adult alternative splicing transitions during vertebrate muscle development. Its capture by nuclear CUG expansions is one major cause for type 1 myotonic dystrophy (DM1). Alternative splicing produces MBNL1 isoforms that differ by the presence or absence of the exonic regions 3, 5, and 7. To understand better their respective roles and the consequences of the deregulation of their expression in DM1, here we studied the respective roles of MBNL1 alternative and constitutive exons. By combining genetics, molecular and cellular approaches, we found that (i) the exon 5 and 6 regions are both needed to control the nuclear localization of MBNL1; (ii) the exon 3 region strongly enhances the affinity of MBNL1 for its pre-mRNA target sites; (iii) the exon 3 and 6 regions are both required for the splicing regulatory activity, and this function is not enhanced by an exclusive nuclear localization of MBNL1; and finally (iv) the exon 7 region enhances MBNL1-MBNL1 dimerization properties. Consequently, the abnormally high inclusion of the exon 5 and 7 regions in DM1 is expected to enhance the potential of MBNL1 of being sequestered with nuclear CUG expansions, which provides new insight into DM1 pathophysiology.


Assuntos
Processamento Alternativo , Núcleo Celular/metabolismo , Éxons , Multimerização Proteica , Proteínas de Ligação a RNA/metabolismo , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/genética , Núcleo Celular/patologia , Células HeLa , Humanos , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/genética , Expansão das Repetições de Trinucleotídeos
12.
Acta Neuropathol Commun ; 10(1): 112, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974399

RESUMO

Alzheimer's disease (AD) is characterized by intracerebral accumulations of extracellular amyloid-ß (Aß) plaques and intracellular tau pathology that spread in the brain. Three types of tau lesions occur in the form of neuropil threads, neurofibrillary tangles, and neuritic plaques i.e. tau aggregates within neurites surrounding Aß deposits. The cascade of events linking these lesions and synaptic or memory impairments are still debated. Intracerebral infusion of human AD brain extracts in Aß plaque-bearing mice that do not overexpress pathological tau proteins induces tau pathologies following heterotopic seeding of mouse tau protein. There is however little information regarding the downstream events including synaptic or cognitive repercussions of tau pathology induction in these models. In the present study, human AD brain extracts (ADbe) and control-brain extracts (Ctrlbe) were infused into the hippocampus of Aß plaque-bearing APPswe/PS1dE9 mice. Memory, synaptic density, as well as Aß plaque and tau aggregate loads, microgliosis, astrogliosis at the inoculation site and in connected regions (perirhinal/entorhinal cortex) were evaluated 4 and 8 months post-inoculation. ADbe inoculation produced the following effects: (i) memory deficit; (ii) increased Aß plaque deposition in proximity to the inoculation site; (iii) tau pathology induction; (iv) appearance of neuropil threads and neurofibrillary tangles next to the inoculation site with a spreading to connected regions. Neuritic plaque pathology was detected in both ADbe- and Ctrlbe-inoculated animals but ADbe inoculation increased the severity close to and at distance of the inoculation site. (v) Finally, ADbe inoculation reduced synaptic density in the vicinity to the inoculation site and in connected regions as the perirhinal/entorhinal cortex. Synaptic impairments were correlated with increased severity of neuritic plaques but not to other tau lesions or Aß lesions, suggesting that neuritic plaques are a culprit for synaptic loss. Synaptic density was also associated with microglial load.


Assuntos
Doença de Alzheimer , Placa Amiloide , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/patologia , Humanos , Camundongos , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Proteínas tau/metabolismo
13.
Front Mol Neurosci ; 15: 841892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250480

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia. While impaired glucose homeostasis has been shown to increase AD risk and pathological loss of tau function, the latter has been suggested to contribute to the emergence of the glucose homeostasis alterations observed in AD patients. However, the links between tau impairments and glucose homeostasis, remain unclear. In this context, the present study aimed at investigating the metabolic phenotype of a new tau knock-in (KI) mouse model, expressing, at a physiological level, a human tau protein bearing the P301L mutation under the control of the endogenous mouse Mapt promoter. Metabolic investigations revealed that, while under chow diet tau KI mice do not exhibit significant metabolic impairments, male but not female tau KI animals under High-Fat Diet (HFD) exhibited higher insulinemia as well as glucose intolerance as compared to control littermates. Using immunofluorescence, tau protein was found colocalized with insulin in the ß cells of pancreatic islets in both mouse (WT, KI) and human pancreas. Isolated islets from tau KI and tau knock-out mice exhibited impaired glucose-stimulated insulin secretion (GSIS), an effect recapitulated in the mouse pancreatic ß-cell line (MIN6) following tau knock-down. Altogether, our data indicate that loss of tau function in tau KI mice and, particularly, dysfunction of pancreatic ß cells might promote glucose homeostasis impairments and contribute to metabolic changes observed in AD.

14.
J Clin Invest ; 132(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35536645

RESUMO

Caffeine is the most widely consumed psychoactive substance in the world. Strikingly, the molecular pathways engaged by its regular consumption remain unclear. We herein addressed the mechanisms associated with habitual (chronic) caffeine consumption in the mouse hippocampus using untargeted orthogonal omics techniques. Our results revealed that chronic caffeine exerts concerted pleiotropic effects in the hippocampus at the epigenomic, proteomic, and metabolomic levels. Caffeine lowered metabolism-related processes (e.g., at the level of metabolomics and gene expression) in bulk tissue, while it induced neuron-specific epigenetic changes at synaptic transmission/plasticity-related genes and increased experience-driven transcriptional activity. Altogether, these findings suggest that regular caffeine intake improves the signal-to-noise ratio during information encoding, in part through fine-tuning of metabolic genes, while boosting the salience of information processing during learning in neuronal circuits.


Assuntos
Cafeína , Proteômica , Animais , Cafeína/metabolismo , Cafeína/farmacologia , Hipocampo/metabolismo , Aprendizagem , Camundongos , Plasticidade Neuronal/fisiologia
15.
Science ; 377(6610): eabq4515, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048943

RESUMO

At the present time, no viable treatment exists for cognitive and olfactory deficits in Down syndrome (DS). We show in a DS model (Ts65Dn mice) that these progressive nonreproductive neurological symptoms closely parallel a postpubertal decrease in hypothalamic as well as extrahypothalamic expression of a master molecule that controls reproduction-gonadotropin-releasing hormone (GnRH)-and appear related to an imbalance in a microRNA-gene network known to regulate GnRH neuron maturation together with altered hippocampal synaptic transmission. Epigenetic, cellular, chemogenetic, and pharmacological interventions that restore physiological GnRH levels abolish olfactory and cognitive defects in Ts65Dn mice, whereas pulsatile GnRH therapy improves cognition and brain connectivity in adult DS patients. GnRH thus plays a crucial role in olfaction and cognition, and pulsatile GnRH therapy holds promise to improve cognitive deficits in DS.


Assuntos
Cognição , Disfunção Cognitiva , Síndrome de Down , Hormônio Liberador de Gonadotropina , Transtornos do Olfato , Adulto , Animais , Cognição/efeitos dos fármacos , Cognição/fisiologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Síndrome de Down/complicações , Síndrome de Down/tratamento farmacológico , Síndrome de Down/psicologia , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/fisiologia , Hormônio Liberador de Gonadotropina/uso terapêutico , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Transtornos do Olfato/tratamento farmacológico , Transtornos do Olfato/etiologia , Transmissão Sináptica/efeitos dos fármacos , Adulto Jovem
16.
Acta Neuropathol Commun ; 9(1): 165, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641980

RESUMO

Amyloid-ß (Aß) pathology transmission has been described in patients following iatrogenic exposure to compounds contaminated with Aß proteins. It can induce cerebral Aß angiopathy resulting in brain hemorrhages and devastating clinical impacts. Iatrogenic transmission of tau pathology is also suspected but not experimentally proven. In both scenarios, lesions were detected several decades after the putatively triggering medico-surgical act. There is however little information regarding the cognitive repercussions in individuals who do not develop cerebral hemorrhages. In the current study, we inoculated the posterior cingulate cortex and underlying corpus callosum of young adult primates (Microcebus murinus) with either Alzheimer's disease or control brain extracts. This led to widespread Aß and tau pathologies in all of the Alzheimer-inoculated animals following a 21-month-long incubation period (n = 12) whereas none of the control brain extract-inoculated animals developed such lesions (n = 6). Aß deposition affected almost all cortical regions. Tau pathology was also detected in Aß-deposit-free regions distant from the inoculation sites (e.g. in the entorhinal cortex), while some regions adjacent, but not connected, to the inoculation sites were spared (e.g. the occipital cortex). Alzheimer-inoculated animals developed cognitive deficits and cerebral atrophy compared to controls. These pathologies were induced using two different batches of Alzheimer brain extracts. This is the first experimental demonstration that tau can be transmitted by human brain extracts inoculations in a primate. We also showed for the first time that the transmission of widespread Aß and tau pathologies can be associated with cognitive decline. Our results thus reinforce the need to organize a systematic monitoring of individuals who underwent procedures associated with a risk of Aß and tau iatrogenic transmission. They also provide support for Alzheimer brain-inoculated primates as relevant models of Alzheimer pathology.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva , Proteínas tau/toxicidade , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Cheirogaleidae , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Humanos , Doença Iatrogênica
17.
Front Pharmacol ; 12: 679335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267657

RESUMO

Identifying which among several in cellulo pharmacological activities is necessary for the proper in vivo activity is essential for further drug development against Alzheimer's disease pathophysiological processes. An in-depth structure-activity relationship-based study has been carried out, and two molecules, named MAGS02-14 and PEL24-199, that share a ß-secretase modulatory effect associated or not to a lysosomotropic activity in cellulo have been identified. In terms of chemical formulas, MAGS02-14 and PEL24-199 only differ from each other by a single nitrogen atom. The study aimed to elucidate the in vivo pharmacological effects of lysosomotropic and/or the ß-secretase modulatory activity in a tau pathology mouse model. To address this question, the THY-Tau22 transgenic model of tauopathy was treated with both compounds for 6 weeks in a curative paradigm. Short-term memory, tau burden, and inflammatory processes were analyzed using orthogonal methods, and PEL24-199, but not MAGS02-14, was shown to restore the short-term memory and reduce the neurofibrillary degenerating process. These effects were associated with a reduced phosphorylation of tau, an increased phosphatase expression, and decreased astrogliosis. Our results, therefore, suggest that the lysosomotropic activity may be nonessential for the effect on tau pathology.

18.
Prog Neurobiol ; 206: 102139, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34391810

RESUMO

Alzheimer's disease is the most common form of dementia characterized by intracellular aggregates of hyperphosphorylated Tau protein and extracellular accumulation of amyloid ß (Aß) peptides. We previously demonstrated that the purinergic receptor P2X7 (P2X7) plays a major role in Aß-mediated neurodegeneration but the relationship between P2X7 and Tau remained overlooked. Such a link was supported by cortical upregulation of P2X7 in patients with various type of frontotemporal lobar degeneration, including mutation in the Tau-coding gene, MAPT, as well as in the brain of a Tauopathy mouse model (THY-Tau22). Subsequent phenotype analysis of P2X7-deficient Tau mice revealed the instrumental impact of this purinergic receptor. Indeed, while P2X7-deficiency had a moderate effect on Tau pathology itself, we observed a significant reduction of microglia activation and of Tau-related inflammatory mediators, particularly CCL4. Importantly, P2X7 deletion ultimately rescued synaptic plasticity and memory impairments of Tau mice. Altogether, the present data support a contributory role of P2X7 dysregulation on processes governing Tau-induced brain anomalies. Due to the convergent role of P2X7 blockade in both Aß and Tau background, P2X7 inhibitors might prove to be ideal candidate drugs to curb the devastating cognitive decline in Alzheimer's disease and Tauopathies.


Assuntos
Doença de Alzheimer , Receptores Purinérgicos P2X7/deficiência , Tauopatias , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Animais , Cognição , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Tauopatias/genética , Proteínas tau/genética
20.
Nat Neurosci ; 23(12): 1567-1579, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33169029

RESUMO

Alzheimer's disease (AD) is characterized by the accumulation of the tau protein in neurons, neurodegeneration and memory loss. However, the role of non-neuronal cells in this chain of events remains unclear. In the present study, we found accumulation of tau in hilar astrocytes of the dentate gyrus of individuals with AD. In mice, the overexpression of 3R tau specifically in hilar astrocytes of the dentate gyrus altered mitochondrial dynamics and function. In turn, these changes led to a reduction of adult neurogenesis, parvalbumin-expressing neurons, inhibitory synapses and hilar gamma oscillations, which were accompanied by impaired spatial memory performances. Together, these results indicate that the loss of tau homeostasis in hilar astrocytes of the dentate gyrus is sufficient to induce AD-like symptoms, through the impairment of the neuronal network. These results are important for our understanding of disease mechanisms and underline the crucial role of astrocytes in hippocampal function.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Astrócitos/metabolismo , Giro Denteado/metabolismo , Transtornos da Memória/metabolismo , Transtornos da Memória/psicologia , Proteínas tau/metabolismo , Doença de Alzheimer/complicações , Animais , Animais Geneticamente Modificados , Feminino , Humanos , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/metabolismo , Neurogênese , Parvalbuminas/metabolismo , Gravidez , Desempenho Psicomotor , Ratos , Memória Espacial , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa