Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Eur Respir J ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331459

RESUMO

BACKGROUND: Long COVID impacts ∼10% of people diagnosed with COVID-19, yet the pathophysiology driving ongoing symptoms is poorly understood. We hypothesised that 129Xe magnetic resonance imaging (MRI) could identify unique pulmonary phenotypic subgroups of long COVID, therefore we evaluated ventilation and gas exchange measurements with cluster analysis to generate imaging-based phenotypes. METHODS: COVID-negative controls and participants who previously tested positive for COVID-19 underwent 129XeMRI ∼14-months post-acute infection across three centres. Long COVID was defined as persistent dyspnea, chest tightness, cough, fatigue, nausea and/or loss of taste/smell at MRI; participants reporting no symptoms were considered fully-recovered. 129XeMRI ventilation defect percent (VDP) and membrane (Mem)/Gas, red blood cell (RBC)/Mem and RBC/Gas ratios were used in k-means clustering for long COVID, and measurements were compared using ANOVA with post-hoc Bonferroni correction. RESULTS: We evaluated 135 participants across three centres: 28 COVID-negative (40±16yrs), 34 fully-recovered (42±14yrs) and 73 long COVID (49±13yrs). RBC/Mem (p=0.03) and FEV1 (p=0.04) were different between long- and COVID-negative; FEV1 and all other pulmonary function tests (PFTs) were within normal ranges. Four unique long COVID clusters were identified compared with recovered and COVID-negative. Cluster1 was the youngest with normal MRI and mild gas-trapping; Cluster2 was the oldest, characterised by reduced RBC/Mem but normal PFTs; Cluster3 had mildly increased Mem/Gas with normal PFTs; and Cluster4 had markedly increased Mem/Gas with concomitant reduction in RBC/Mem and restrictive PFT pattern. CONCLUSION: We identified four 129XeMRI long COVID phenotypes with distinct characteristics. 129XeMRI can dissect pathophysiologic heterogeneity of long COVID to enable personalised patient care.

2.
Curr Opin Pulm Med ; 30(2): 121-128, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265250

RESUMO

PURPOSE OF REVIEW: Spirometry is a validated tool in the diagnosis of obstructive airways disease. However, it may be insufficiently sensitive in detecting airflow limitation in the small airways. This review highlights common clinical scenarios wherein airflow limitation may be missed or overlooked. RECENT FINDINGS: This article covers recent literature on the interpretation of lung function test, focusing on detection of mild obstructive airways disease. It also sheds light on the contextual difficulties of defining mild airflow limitation on spirometry. SUMMARY: We highlight the consensus definition of mild obstructive airways disease and emphasize that this definition does not necessarily mean mild in certain disease-specific contexts. Several spirometric findings outside of a reduced forced expiratory volume in one second/forced vital capacity ratio should raise suspicion of mild obstruction.


Assuntos
Obstrução das Vias Respiratórias , Pneumopatias Obstrutivas , Humanos , Espirometria , Volume Expiratório Forçado
3.
J Magn Reson Imaging ; 56(5): 1475-1486, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35278011

RESUMO

BACKGROUND: Outside eosinophilia, current clinical asthma phenotypes do not show strong relationships with disease pathogenesis or treatment responses. While chest x-ray computed tomography (CT) phenotypes have previously been explored, functional MRI measurements provide complementary phenotypic information. PURPOSE: To derive novel data-driven asthma phenotypic clusters using functional MRI airway biomarkers that better describe airway pathologies in patients. STUDY TYPE: Retrospective. POPULATION: A total of 45 patients with asthma who underwent post-bronchodilator 129 Xe MRI, volume-matched CT, spirometry and plethysmography within a 90-minute visit. FIELD STRENGTH/SEQUENCE: Three-dimensional gradient-recalled echo 129 Xe ventilation sequence at 3 T. ASSESSMENT: We measured MRI ventilation defect percent (VDP), CT airway wall-area percent (WA%), wall-thickness (WT, WT* [*normalized for age/sex/height]), lumen-area (LA), lumen-diameter (D, D*) and total airway count (TAC). Univariate relationships were utilized to select variables for k-means cluster analysis and phenotypic subgroup generation. Spirometry and plethysmography measurements were compared across imaging-based clusters. STATISTICAL TESTS: Spearman correlation (ρ), one-way analysis of variance (ANOVA) or Kruskal-Wallis tests with post hoc Bonferroni correction for multiple comparisons, significance level 0.05. RESULTS: Based on limited common variance (Kaiser-Meyer-Olkin-measure = 0.44), four unique clusters were generated using MRI VDP, TAC, WT* and D* (52 ± 14 years, 27 female). Imaging measurements were significantly different across clusters as was the forced expiratory volume in 1-second (FEV1 %pred ), residual volume/total lung capacity and airways resistance. Asthma-control (P = 0.9), quality-of-life scores (P = 0.7) and the proportions of severe-asthma (P = 0.4) were not significantly different. Cluster1 (n = 15/8 female) reflected mildly abnormal CT airway measurements and FEV1 with moderately abnormal VDP. Cluster2 (n = 12/12 female) reflected moderately abnormal TAC, WT and FEV1 . In Cluster3 and Cluster4 (n = 14/6 female, n = 4/1 female, respectively), there was severely reduced TAC, D and FEV1 , but Cluster4 also had significantly worse, severely abnormal VDP (7 ± 5% vs. 41 ± 12%). DATA CONCLUSION: We generated four proof-of-concept MRI-derived clusters of asthma with distinct structure-function pathologies. Cluster analysis of asthma using 129 Xe MRI in combination with CT biomarkers is feasible and may challenge currently used paradigms for asthma phenotyping and treatment decisions. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage.


Assuntos
Asma , Broncodilatadores , Asma/diagnóstico por imagem , Broncodilatadores/uso terapêutico , Análise por Conglomerados , Feminino , Humanos , Pulmão/patologia , Imageamento por Ressonância Magnética/métodos , Fenótipo , Estudos Retrospectivos
4.
Respirology ; 27(2): 114-133, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35008127

RESUMO

Pulmonary functional MRI (PfMRI) using inhaled hyperpolarized, radiation-free gases (such as 3 He and 129 Xe) provides a way to directly visualize inhaled gas distribution and ventilation defects (or ventilation heterogeneity) in real time with high spatial (~mm3 ) resolution. Both gases enable quantitative measurement of terminal airway morphology, while 129 Xe uniquely enables imaging the transfer of inhaled gas across the alveolar-capillary tissue barrier to the red blood cells. In patients with asthma, PfMRI abnormalities have been shown to reflect airway smooth muscle dysfunction, airway inflammation and remodelling, luminal occlusions and airway pruning. The method is rapid (8-15 s), cost-effective (~$300/scan) and very well tolerated in patients, even in those who are very young or very ill, because unlike computed tomography (CT), positron emission tomography and single-photon emission CT, there is no ionizing radiation and the examination takes only a few seconds. However, PfMRI is not without limitations, which include the requirement of complex image analysis, specialized equipment and additional training and quality control. We provide an overview of the three main applications of hyperpolarized noble gas MRI in asthma research including: (1) inhaled gas distribution or ventilation imaging, (2) alveolar microstructure and finally (3) gas transfer into the alveolar-capillary tissue space and from the tissue barrier into red blood cells in the pulmonary microvasculature. We highlight the evidence that supports a deeper understanding of the mechanisms of asthma worsening over time and the pathologies responsible for symptoms and disease control. We conclude with a summary of approaches that have the potential for integration into clinical workflows and that may be used to guide personalized treatment planning.


Assuntos
Asma , Qualidade de Vida , Asma/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Isótopos de Xenônio
5.
Magn Reson Med ; 86(6): 2966-2986, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34478584

RESUMO

Hyperpolarized (HP) 129 Xe MRI uniquely images pulmonary ventilation, gas exchange, and terminal airway morphology rapidly and safely, providing novel information not possible using conventional imaging modalities or pulmonary function tests. As such, there is mounting interest in expanding the use of biomarkers derived from HP 129 Xe MRI as outcome measures in multi-site clinical trials across a range of pulmonary disorders. Until recently, HP 129 Xe MRI techniques have been developed largely independently at a limited number of academic centers, without harmonizing acquisition strategies. To promote uniformity and adoption of HP 129 Xe MRI more widely in translational research, multi-site trials, and ultimately clinical practice, this position paper from the 129 Xe MRI Clinical Trials Consortium (https://cpir.cchmc.org/XeMRICTC) recommends standard protocols to harmonize methods for image acquisition in HP 129 Xe MRI. Recommendations are described for the most common HP gas MRI techniques-calibration, ventilation, alveolar-airspace size, and gas exchange-across MRI scanner manufacturers most used for this application. Moreover, recommendations are described for 129 Xe dose volumes and breath-hold standardization to further foster consistency of imaging studies. The intention is that sites with HP 129 Xe MRI capabilities can readily implement these methods to obtain consistent high-quality images that provide regional insight into lung structure and function. While this document represents consensus at a snapshot in time, a roadmap for technical developments is provided that will further increase image quality and efficiency. These standardized dosing and imaging protocols will facilitate the wider adoption of HP 129 Xe MRI for multi-site pulmonary research.


Assuntos
Pulmão , Isótopos de Xenônio , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Multicêntricos como Assunto , Ventilação Pulmonar , Respiração
6.
Am J Respir Crit Care Med ; 201(8): 923-933, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31895987

RESUMO

Rationale: In patients with asthma, X-ray computed tomography (CT) has provided evidence of thickened airway walls and airway occlusions, but the total number of CT-visible airways and its relationship with disease severity is unknown.Objectives: To measure CT total airway count (TAC) in asthma and evaluate relationships with asthma severity, airway morphology, pulmonary function, and magnetic resonance imaging (MRI) ventilation.Methods: Participants underwent post-bronchodilator inspiratory CT, and prebronchodilator and post-bronchodilator spirometry and hyperpolarized 3He MRI. CT TAC was quantified as the sum of airways in the segmented airway tree, and airway wall area percent (WA%) and lumen area were measured. MRI ventilation abnormalities were quantified as the ventilation defect percent.Measurements and Main Results: We evaluated 70 participants, including 15 Global Initiative for Asthma (GINA) steps 1 to 3, 19 GINA 4, and 36 GINA 5 participants with asthma. As compared with GINA 1 to 3, TAC was significantly diminished in GINA 4 (P = 0.03) and GINA 5 (P = 0.045). Terminal airway intraluminal occlusion was present in 5 (2 GINA 4 and 3 GINA 5) of 70 participants. Sub-subsegmental airways were CT-invisible or missing in 69 out of 70 participants; the most common number of missing sub-subsegments was 10. Participants with ≥10 missing subsegments had worse WA% (P < 0.0001), lumen area (P < 0.0001), and ventilation defect percent (P = 0.03) than those with <10 missing subsegments. In a multivariable model, TAC (standardized regression coefficient = 0.50; P = 0.001) independently predicted FEV1 (R2 = 0.27; P = 0.003) and, in a separate model, TAC (standardized regression coefficient = -0.53; P < 0.0001) independently predicted airway WA% (R2 = 0.32; P = 0.0001).Conclusions: TAC was significantly diminished in participants with greater asthma severity and was related to airway wall thickness and ventilation defects. Fewer airways in severe than in mild asthma challenges our understanding of airway disease in asthma.Clinical trial registered with www.clinicaltrials.gov (NCT02351141).


Assuntos
Asma/diagnóstico por imagem , Brônquios/diagnóstico por imagem , Adulto , Asma/fisiopatologia , Brônquios/patologia , Feminino , Volume Expiratório Forçado , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Pletismografia , Ventilação Pulmonar/fisiologia , Índice de Gravidade de Doença , Espirometria , Tomografia Computadorizada por Raios X , Capacidade Vital
7.
Radiology ; 295(1): 227-236, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32096708

RESUMO

Background Pulmonary imaging of chronic obstructive pulmonary disease (COPD) has focused on CT or MRI measurements, but these have not been evaluated in combination. Purpose To generate multiparametric response map (mPRM) measurements in ex-smokers with or without COPD by using volume-matched CT and hyperpolarized helium 3 (3He) MRI. Materials and Methods In this prospective study (https://clinicaltrials.gov, NCT02279329), participants underwent MRI and CT and completed pulmonary function tests, questionnaires, and the 6-minute walk test between December 2010 and January 2019. Disease status was determined by using Global initiative for chronic Obstructive Lung Disease (GOLD) criteria. The mPRM voxel values were generated by using co-registered MRI and CT labels. Kruskal-Wallis and Bonferroni tests were used to determine differences across disease severity, and correlations were determined by using Spearman coefficients. Results A total of 175 ex-smokers (mean age, 69 years ± 9 [standard deviation], 108 men) with or without COPD were evaluated. Ex-smokers without COPD had a larger fraction of normal mPRM voxels (60% vs 37%, 20%, and 7% for GOLD I, II, and III/IV disease, respectively; all P ≤ .001) and a smaller fraction of abnormal voxels, including small airways disease (normal CT, not ventilated: 5% vs 6% [not significant], 11%, and 19% [P ≤ .001 for both] for GOLD I, II, and III/IV disease, respectively) and mild emphysema (normal CT, abnormal apparent diffusion coefficient [ADC]: 33% vs 54%, 56%, and 54% for GOLD I, II, and III/IV disease respectively; all P ≤ .001). Normal mPRM measurements were positively correlated with forced expiratory volume in 1 second (FEV1) (r = 0.65, P < .001), the FEV1-to-forced vital capacity ratio (r = 0.81, P < .001), and diffusing capacity (r = 0.75, P < .001) and were negatively correlated with worse quality of life (r = -0.48, P < .001). Abnormal mPRM measurements of small airways disease (normal CT, not ventilated) and mild emphysema (normal CT, abnormal ADC) were negatively correlated with FEV1 (r = -0.65 and -0.42, respectively; P < .001) and diffusing capacity (r = -0.53 and -0.60, respectively; P < .001) and were positively correlated with worse quality of life (r = 0.45 and r = 0.33, respectively; P < .001), both of which were present in ex-smokers without COPD. Conclusion Multiparametric response maps revealed two abnormal structure-function results related to emphysema and small airways disease, both of which were unexpectedly present in ex-smokers with normal spirometry and CT findings. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Idoso , Feminino , Volume Expiratório Forçado , Hélio , Humanos , Isótopos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Tomografia Computadorizada por Raios X/métodos
8.
Radiology ; 293(1): 212-220, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31385758

RESUMO

Background Longitudinal progression to irreversible airflow limitation occurs in approximately 10% of patients with asthma, but it is difficult to identify patients who are at risk for this transition. Purpose To investigate 6-year longitudinal changes in hyperpolarized helium 3 (3He) MRI ventilation defects in study participants with mild-to-moderate asthma and identify predictors of longitudinal changes in postbronchodilator forced expiratory volume in 1 second (FEV1) reversibility Materials and Methods Spirometry and hyperpolarized 3He MRI were evaluated in participants with mild-to-moderate asthma in two prospectively planned visits approximately 6 years apart. Participants underwent methacholine challenge at baseline (January 2010 to April 2011) and pre- and postbronchodilator evaluations at follow-up (November 2016 to June 2017). FEV1 and MRI ventilation defects, quantified as ventilation defect volume (VDV), were compared between visits by using paired t tests. Participants were dichotomized by postbronchodilator change in FEV1 at follow-up, and differences between reversible and not-reversible groups were determined by using unpaired t tests. Multivariable models were generated to explain postbronchodilator FEV1 reversibility at follow-up. Results Eleven participants with asthma (mean age, 42 years ± 9 [standard deviation]; seven men) were evaluated at baseline and after mean 78 months ± 7. Medications, exacerbations, FEV1 (76% predicted vs 76% predicted; P = .91), and VDV (240 mL vs 250 mL; P = .92) were not different between visits. In eight of 11 participants (73%), MRI ventilation defects at baseline were at the same location in the lung at follow-up MRI. In the remaining three participants (27%), MRI ventilation defects worsened at the same lung locations as depicted at baseline methacholine-induced ventilation. At follow-up, postbronchodilator FEV1 was not reversible in six of 11 participants; the concentration of methacholine to decrease FEV1 by 20% (PC20) was greater in FEV1-irreversible participants at follow-up (P = .01). In a multivariable model, baseline MRI VDV helped to predict postbronchodilator reversibility at follow-up (R 2 = 0.80; P < .01), but PC20, age, and FEV1 did not (R 2 = 0.63; P = .15). Conclusion MRI-derived, spatially persistent ventilation defects predict postbronchodilator reversibility 78 months ± 7 later for participants with mild-to-moderate asthma in whom there were no changes in lung function, medication, or exacerbations. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Stojanovska in this issue.


Assuntos
Asma/tratamento farmacológico , Asma/fisiopatologia , Broncodilatadores/uso terapêutico , Hélio , Isótopos , Imageamento por Ressonância Magnética/métodos , Adulto , Asma/diagnóstico por imagem , Testes de Provocação Brônquica/estatística & dados numéricos , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Pulmão/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes
10.
Am J Respir Crit Care Med ; 197(7): 876-884, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29313707

RESUMO

RATIONALE: Inflammation and smooth muscle dysfunction are integral components of severe asthma that contribute to luminal obstruction causing airflow limitation, ventilation heterogeneity, and symptoms. This is important for guiding treatment decisions directed at the inflammatory (e.g., anti-T-helper cell type 2 monoclonal antibodies) and noninflammatory, smooth muscle-mediated (e.g., bronchial thermoplasty) components of severe asthma. OBJECTIVES: To investigate the contribution of eosinophilic bronchitis and smooth muscle dysfunction to magnetic resonance imaging (MRI) ventilation heterogeneity in patients with severe asthma. METHODS: We measured the inhaled hyperpolarized gas MRI response to salbutamol as a marker of smooth muscle dysfunction, and sputum eosinophils as a marker of airway inflammation, and their contributions to ventilation heterogeneity (quantified as the ventilation defect percent [VDP]) in 27 patients with severe asthma. Spirometry and forced oscillation airway resistance measurements were also acquired pre- and postsalbutamol. Patients were dichotomized on the basis of sputum eosinophilia, and pre- and postsalbutamol VDP and physiological measurements were evaluated. MEASUREMENTS AND MAIN RESULTS: MRI VDP improved with salbutamol inhalation in patients in whom sputum eosinophilia was uncontrolled (≥3%, n = 16) (P = 0.002) and in those in whom it was controlled (<3%, n = 11) (P = 0.02), independent of improvements in FEV1, indicating smooth muscle response. In those patients in whom sputum eosinophilia was uncontrolled, greater VDP persisted postsalbutamol (P = 0.004). Postsalbutamol VDP correlated with sputum eosinophils (r = 0.63; P = 0.005). CONCLUSIONS: In patients with severe asthma, MRI regionally identifies the inflammatory and noninflammatory components of airway disease. Ventilation heterogeneity persists postsalbutamol in patients with uncontrolled eosinophilic bronchitis, which may be the functional consequence of airway inflammation.


Assuntos
Asma/complicações , Asma/fisiopatologia , Eosinofilia/complicações , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adulto , Asma/sangue , Eosinofilia/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Respiração , Testes de Função Respiratória , Índice de Gravidade de Doença , Escarro
12.
Radiology ; 287(2): 693-704, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29470939

RESUMO

Purpose To measure regional specific ventilation with free-breathing hydrogen 1 (1H) magnetic resonance (MR) imaging without exogenous contrast material and to investigate correlations with hyperpolarized helium 3 (3He) MR imaging and pulmonary function test measurements in healthy volunteers and patients with asthma. Materials and Methods Subjects underwent free-breathing 1H and static breath-hold hyperpolarized 3He MR imaging as well as spirometry and plethysmography; participants were consecutively recruited between January and June 2017. Free-breathing 1H MR imaging was performed with an optimized balanced steady-state free-precession sequence; images were retrospectively grouped into tidal inspiration or tidal expiration volumes with exponentially weighted phase interpolation. MR imaging volumes were coregistered by using optical flow deformable registration to generate 1H MR imaging-derived specific ventilation maps. Hyperpolarized 3He MR imaging- and 1H MR imaging-derived specific ventilation maps were coregistered to quantify regional specific ventilation within hyperpolarized 3He MR imaging ventilation masks. Differences between groups were determined with the Mann-Whitney test and relationships were determined with Spearman (ρ) correlation coefficients. Statistical analyses were performed with software. Results Thirty subjects (median age: 50 years; interquartile range [IQR]: 30 years), including 23 with asthma and seven healthy volunteers, were evaluated. Both 1H MR imaging-derived specific ventilation and hyperpolarized 3He MR imaging-derived ventilation percentage were significantly greater in healthy volunteers than in patients with asthma (specific ventilation: 0.14 [IQR: 0.05] vs 0.08 [IQR: 0.06], respectively, P < .0001; ventilation percentage: 99% [IQR: 1%] vs 94% [IQR: 5%], P < .0001). For all subjects, 1H MR imaging-derived specific ventilation correlated with plethysmography-derived specific ventilation (ρ = 0.54, P = .002) and hyperpolarized 3He MR imaging-derived ventilation percentage (ρ = 0.67, P < .0001) as well as with forced expiratory volume in 1 second (FEV1) (ρ = 0.65, P = .0001), ratio of FEV1 to forced vital capacity (ρ = 0.75, P < .0001), ratio of residual volume to total lung capacity (ρ = -0.68, P < .0001), and airway resistance (ρ = -0.51, P = .004). 1H MR imaging-derived specific ventilation was significantly greater in the gravitational-dependent versus nondependent lung in healthy subjects (P = .02) but not in patients with asthma (P = .1). In patients with asthma, coregistered 1H MR imaging specific ventilation and hyperpolarized 3He MR imaging maps showed that specific ventilation was diminished in corresponding 3He MR imaging ventilation defects (0.05 ± 0.04) compared with well-ventilated regions (0.09 ± 0.05) (P < .0001). Conclusion 1H MR imaging-derived specific ventilation correlated with plethysmography-derived specific ventilation and ventilation defects seen by using hyperpolarized 3He MR imaging. © RSNA, 2018 Online supplemental material is available for this article.


Assuntos
Asma/fisiopatologia , Imageamento por Ressonância Magnética , Respiração , Adulto , Idoso , Idoso de 80 Anos ou mais , Asma/diagnóstico por imagem , Asma/metabolismo , Feminino , Voluntários Saudáveis , Hélio/metabolismo , Humanos , Hidrogênio/metabolismo , Interpretação de Imagem Assistida por Computador , Medidas de Volume Pulmonar , Masculino , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Troca Gasosa Pulmonar , Reprodutibilidade dos Testes , Testes de Função Respiratória , Estudos Retrospectivos , Adulto Jovem
13.
Thorax ; 72(5): 475-477, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28258250

RESUMO

: COPD biomarkers are urgently required for clinical trials of new therapies. We evaluated the longitudinal change and relationship of MRI and CT biomarkers of COPD with St. George's Respiratory Questionnaire (SGRO) and FEV1 worsening over 30 months. Among imaging biomarkers, only the longitudinal change in MRI ventilation defect percent (VDP) was greater in ever-smoker (n=34/p<0.05) and COPD (n=48/p<0.0001) subgroups compared with never-smokers (n=42). Only the longitudinal change in VDP was correlated with change in SGRQ (r=0.26/p=0.03), and only baseline VDP predicted longitudinal change in SGRQ>minimum clinically important difference (p=0.047) in mild-to-moderate COPD. These data strongly support the use of MRI intermediate endpoints in COPD studies. TRIAL REGISTRATION NUMBER: NCT02723474; Status: Recruiting.


Assuntos
Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Qualidade de Vida , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Projetos de Pesquisa , Testes de Função Respiratória , Inquéritos e Questionários , Tomografia Computadorizada por Raios X
14.
J Magn Reson Imaging ; 45(4): 1204-1215, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27731948

RESUMO

PURPOSE: To develop and assess ultrashort echo-time (UTE) magnetic resonance imaging (MRI) biomarkers of lung function in asthma patients. MATERIALS AND METHODS: Thirty participants including 13 healthy volunteers and 17 asthmatics provided written informed consent to UTE and pulmonary function tests in addition to hyperpolarized-noble-gas 3T MRI and computed tomography (CT) for asthmatics only. The difference in MRI signal-intensity (SI) across four lung volumes (full-expiration, functional-residual-capacity [FRC], FRC+1L, and full-inspiration) was determined on a voxel-by-voxel basis to generate dynamic proton-density (DPD) maps. MRI ventilation-defect-percent (VDP), UTE SI, and DPD values as well as CT radiodensity were determined for whole lung and individual lobes. RESULTS: Mean SI at full-expiration (P < 0.01), FRC (P < 0.05), and DPD (P < 0.01) were greater in healthy volunteers compared to asthmatics. In asthmatics, UTE SI at full-expiration and DPD were correlated with FEV1 /FVC (SI r = 0.73/P = 0.002; DPD r = 0.75/P = 0.003), RV/TLC (SI r = -0.57/P = 0.02), or RV (DPD r = -0.62/P = 0.02), CT radiodensity (SI r = 0.83/P = 0.006; DPD r = 0.71/P = 0.01), and lobar VDP (SI rs = -0.33/P = 0.02; DPD rs = -0.47/P = 0.01). CONCLUSION: In patients with asthma, UTE SI and dynamic proton-density were related to pulmonary function measurements, whole lung and lobar VDP, as well as CT radiodensity. Thus, UTE MRI biomarkers may reflect ventilation heterogeneity and/or gas-trapping in asthmatics using conventional equipment, making this approach potentially amenable for clinical use. LEVEL OF EVIDENCE: 2 J. Magn. Reson. Imaging 2017;45:1204-1215.


Assuntos
Asma/fisiopatologia , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adulto , Biomarcadores , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória
19.
COPD ; 13(5): 601-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26788765

RESUMO

Pulmonary ventilation may be visualized and measured using hyperpolarized (3)He magnetic resonance imaging (MRI) while emphysema and its distribution can be quantified using thoracic computed tomography (CT). Our objective was to phenotype ex-smokers with COPD based on the apical-to-basal distribution of ventilation abnormalities and emphysema to better understand how these phenotypes change regionally as COPD progresses. We evaluated 100 COPD ex-smokers who provided written informed consent and underwent spirometry, CT and (3)He MRI. (3)He MRI ventilation imaging was used to quantify the ventilation defect percent (VDP) for whole-lung and individual lung lobes. Regional VDP was used to generate the apical-lung (AL)-to-basal-lung (BL) difference (ΔVDP); a positive ΔVDP indicated AL-predominant and negative ΔVDP indicated BL-predominant ventilation defects. Emphysema was quantified using the relative-area-of-the-lung ≤-950HU (RA950) of the CT density histogram for whole-lung and individual lung lobes. The AL-to-BL RA950 difference (ΔRA950) was generated with a positive ΔRA950 indicating AL-predominant emphysema and a negative ΔRA950 indicating BL-predominant emphysema. Seventy-two ex-smokers reported BL-predominant MRI ventilation defects and 71 reported AL-predominant CT emphysema. BL-predominant ventilation defects (AL/BL: GOLD I = 18%/82%, GOLD II = 24%/76%) and AL-predominant emphysema (AL/BL: GOLD I = 84%/16%, GOLD II = 72%/28%) were the major phenotypes in mild-moderate COPD. In severe COPD there was a more uniform distribution for ventilation defects (AL/BL: GOLD III = 40%/60%, GOLD IV = 43%/57%) and emphysema (AL/BL: GOLD III = 64%/36%, GOLD IV = 43%/57%). Basal-lung ventilation defects predominated in mild-moderate GOLD grades, and a more homogeneous distribution of ventilation defects was observed in more advanced grade COPD; these differences suggest that over time, regional ventilation abnormalities become more homogenously distributed during disease progression.


Assuntos
Enfisema/diagnóstico por imagem , Pulmão/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste , Feminino , Volume Expiratório Forçado , Hélio , Humanos , Isótopos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Fenótipo , Pletismografia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Ventilação Pulmonar , Volume Residual , Abandono do Hábito de Fumar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa