Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
EMBO Rep ; 24(12): e57224, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37818801

RESUMO

The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrate that SARS-CoV-2 infection causes tetherin downregulation and that tetherin depletion from cells enhances SARS-CoV-2 viral titres. We investigate the potential viral proteins involved in abrogating tetherin function and find that SARS-CoV-2 ORF3a reduces tetherin localisation within biosynthetic organelles where Coronaviruses bud, and increases tetherin localisation to late endocytic organelles via reduced retrograde recycling. We also find that expression of Spike protein causes a reduction in cellular tetherin levels. Our results confirm that tetherin acts as a host restriction factor for SARS-CoV-2 and highlight the multiple distinct mechanisms by which SARS-CoV-2 subverts tetherin function.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Liberação de Vírus , Humanos , Antígeno 2 do Estroma da Médula Óssea/antagonistas & inibidores , Antígeno 2 do Estroma da Médula Óssea/metabolismo , COVID-19/virologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética
2.
Am J Hum Genet ; 107(6): 1129-1148, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33186545

RESUMO

The endosomal sorting complexes required for transport (ESCRTs) are essential for multiple membrane modeling and membrane-independent cellular processes. Here we describe six unrelated individuals with de novo missense variants affecting the ATPase domain of VPS4A, a critical enzyme regulating ESCRT function. Probands had structural brain abnormalities, severe neurodevelopmental delay, cataracts, growth impairment, and anemia. In cultured cells, overexpression of VPS4A mutants caused enlarged endosomal vacuoles resembling those induced by expression of known dominant-negative ATPase-defective forms of VPS4A. Proband-derived fibroblasts had enlarged endosomal structures with abnormal accumulation of the ESCRT protein IST1 on the limiting membrane. VPS4A function was also required for normal endosomal morphology and IST1 localization in iPSC-derived human neurons. Mutations affected other ESCRT-dependent cellular processes, including regulation of centrosome number, primary cilium morphology, nuclear membrane morphology, chromosome segregation, mitotic spindle formation, and cell cycle progression. We thus characterize a distinct multisystem disorder caused by mutations affecting VPS4A and demonstrate that its normal function is required for multiple human developmental and cellular processes.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , ATPases Vacuolares Próton-Translocadoras/genética , Alelos , Animais , Encéfalo/anormalidades , Ciclo Celular , Centrossomo/metabolismo , Endossomos/metabolismo , Fibroblastos/metabolismo , Genômica , Células HEK293 , Células HeLa , Humanos , Camundongos , Neurônios/metabolismo , Domínios Proteicos , Transporte Proteico , Fuso Acromático/metabolismo
3.
J Cell Sci ; 134(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34042162

RESUMO

To provide insights into the kiss-and-run and full fusion events resulting in endocytic delivery to lysosomes, we investigated conditions causing increased tethering and pore formation between late endocytic organelles in HeLa cells. Knockout of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) VAMP7 and VAMP8 showed, by electron microscopy, the accumulation of tethered lysosome-associated membrane protein (LAMP)-carrier vesicles around multivesicular bodies, as well as the appearance of 'hourglass' profiles of late endocytic organelles attached by filamentous tethers, but did not prevent endocytic delivery to lysosomal hydrolases. Subsequent depletion of the SNARE YKT6 reduced this delivery, consistent with it compensating for the absence of VAMP7 and VAMP8. We also investigated filamentous tethering between multivesicular bodies and enlarged endolysosomes following depletion of charged multi-vesicular body protein 6 (CHMP6), and provide the first evidence that pore formation commences at the edge of tether arrays, with pore expansion required for full membrane fusion.


Assuntos
Fusão de Membrana , Proteínas SNARE , Endossomos , Células HeLa , Humanos , Lisossomos , Proteínas R-SNARE/genética , Proteínas SNARE/genética
4.
J Cell Sci ; 133(12)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32376785

RESUMO

Optineurin (OPTN) is a multifunctional protein involved in autophagy and secretion, as well as nuclear factor κB (NF-κB) and IRF3 signalling, and OPTN mutations are associated with several human diseases. Here, we show that, in response to viral RNA, OPTN translocates to foci in the perinuclear region, where it negatively regulates NF-κB and IRF3 signalling pathways and downstream pro-inflammatory cytokine secretion. These OPTN foci consist of a tight cluster of small membrane vesicles, which are positive for ATG9A. Disease mutations in OPTN linked to primary open-angle glaucoma (POAG) cause aberrant foci formation in the absence of stimuli, which correlates with the ability of OPTN to inhibit signalling. By using proximity labelling proteomics, we identify the linear ubiquitin assembly complex (LUBAC), CYLD and TBK1 as part of the OPTN interactome and show that these proteins are recruited to this OPTN-positive perinuclear compartment. Our work uncovers a crucial role for OPTN in dampening NF-κB and IRF3 signalling through the sequestration of LUBAC and other positive regulators in this viral RNA-induced compartment, leading to altered pro-inflammatory cytokine secretion.


Assuntos
Glaucoma de Ângulo Aberto , Fator de Transcrição TFIIIA , Proteínas de Ciclo Celular , Citocinas/genética , Humanos , Proteínas de Membrana Transportadoras , NF-kappa B/genética , NF-kappa B/metabolismo , Transporte Proteico , Transdução de Sinais , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo
5.
Brain ; 141(12): 3428-3442, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496365

RESUMO

Mutations in the endosome-associated protein CHMP2B cause frontotemporal dementia and lead to lysosomal storage pathology in neurons. We here report that physiological levels of mutant CHMP2B causes reduced numbers and significantly impaired trafficking of endolysosomes within neuronal dendrites, accompanied by increased dendritic branching. Mechanistically, this is due to the stable incorporation of mutant CHMP2B onto neuronal endolysosomes, which we show renders them unable to traffic within dendrites. This defect is due to the inability of mutant CHMP2B to recruit the ATPase VPS4, which is required for release of CHMP2B from endosomal membranes. Strikingly, both impaired trafficking and the increased dendritic branching were rescued by treatment with antisense oligonucleotides targeting the well validated frontotemporal dementia risk factor TMEM106B, which encodes an endolysosomal protein. This indicates that reducing TMEM106B levels can restore endosomal health in frontotemporal dementia. As TMEM106B is a risk factor for frontotemporal dementia caused by both C9orf72 and progranulin mutations, and antisense oligonucleotides are showing promise as therapeutics for neurodegenerative diseases, our data suggests a potential new strategy for treating the wide range of frontotemporal dementias associated with endolysosomal dysfunction.


Assuntos
Dendritos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Demência Frontotemporal/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal
6.
Brain ; 141(5): 1286-1299, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481671

RESUMO

Many genetic neurological disorders exhibit variable expression within affected families, often exemplified by variations in disease age at onset. Epistatic effects (i.e. effects of modifier genes on the disease gene) may underlie this variation, but the mechanistic basis for such epistatic interactions is rarely understood. Here we report a novel epistatic interaction between SPAST and the contiguous gene DPY30, which modifies age at onset in hereditary spastic paraplegia, a genetic axonopathy. We found that patients with hereditary spastic paraplegia caused by genomic deletions of SPAST that extended into DPY30 had a significantly younger age at onset. We show that, like spastin, the protein encoded by SPAST, the DPY30 protein controls endosomal tubule fission, traffic of mannose 6-phosphate receptors from endosomes to the Golgi, and lysosomal ultrastructural morphology. We propose that additive effects on this pathway explain the reduced age at onset of hereditary spastic paraplegia in patients who are haploinsufficient for both genes.


Assuntos
Epistasia Genética/genética , Mutação/genética , Proteínas Nucleares/genética , Paraplegia Espástica Hereditária/genética , Espastina/genética , Adulto , Idade de Início , Antígenos CD8/genética , Antígenos CD8/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa/metabolismo , Células HeLa/ultraestrutura , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/ultraestrutura , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Transporte Proteico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Traffic ; 17(8): 908-22, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27126738

RESUMO

Krabbe disease is a severe, fatal neurodegenerative disorder caused by defects in the lysosomal enzyme galactocerebrosidase (GALC). The correct targeting of GALC to the lysosome is essential for the degradation of glycosphingolipids including the primary lipid component of myelin. Over 100 different mutations have been identified in GALC that cause Krabbe disease but the mechanisms by which they cause disease remain unclear. We have generated monoclonal antibodies against full-length human GALC and used these to monitor the trafficking and processing of GALC variants in cell-based assays and by immunofluorescence microscopy. Striking differences in the secretion, processing and endosomal targeting of GALC variants allows the classification of these into distinct categories. A subset of GALC variants are not secreted by cells, not proteolytically processed, and remain trapped in the ER; these are likely to cause disease due to protein misfolding and should be targeted for pharmacological chaperone therapies. Other GALC variants can be correctly secreted by cells and cause disease due to catalytic defects in the enzyme active site, inappropriate post-translational modification or a potential inability to bind essential cofactors. The classification of disease pathogenesis presented here provides a molecular framework for appropriate targeting of future Krabbe disease therapies.


Assuntos
Galactosilceramidase/metabolismo , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Lisossomos/metabolismo , Mutação/genética , Linhagem Celular , Galactosilceramidase/química , Galactosilceramidase/genética , Humanos , Lisossomos/genética , Processamento de Proteína Pós-Traducional
8.
Hum Mol Genet ; 24(17): 4984-96, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26085577

RESUMO

Adaptor proteins (AP 1-5) are heterotetrameric complexes that facilitate specialized cargo sorting in vesicular-mediated trafficking. Mutations in AP5Z1, encoding a subunit of the AP-5 complex, have been reported to cause hereditary spastic paraplegia (HSP), although their impact at the cellular level has not been assessed. Here we characterize three independent fibroblast lines derived from skin biopsies of patients harbouring nonsense mutations in AP5Z1 and presenting with spastic paraplegia accompanied by neuropathy, parkinsonism and/or cognitive impairment. In all three patient-derived lines, we show that there is complete loss of AP-5 ζ protein and a reduction in the associated AP-5 µ5 protein. Using ultrastructural analysis, we show that these patient-derived lines consistently exhibit abundant multilamellar structures that are positive for markers of endolysosomes and are filled with aberrant storage material organized as exaggerated multilamellar whorls, striated belts and 'fingerprint bodies'. This phenotype can be replicated in a HeLa cell culture model by siRNA knockdown of AP-5 ζ. The cellular phenotype bears striking resemblance to features described in a number of lysosomal storage diseases (LSDs). Collectively, these findings reveal an emerging picture of the role of AP-5 in endosomal and lysosomal homeostasis, illuminates a potential pathomechanism that is relevant to the role of AP-5 in neurons and expands the understanding of recessive HSPs. Moreover, the resulting accumulation of storage material in endolysosomes leads us to propose that AP-5 deficiency represents a new type of LSDs.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Endossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Mutação , Idoso , Feminino , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Técnicas de Silenciamento de Genes , Estudos de Associação Genética , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA
9.
J Cell Sci ; 128(14): 2520-8, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26002056

RESUMO

Intracellular amyloid-ß (Aß) accumulation is a key feature of early Alzheimer's disease and precedes the appearance of Aß in extracellular plaques. Aß is generated through proteolytic processing of amyloid precursor protein (APP), but the intracellular site of Aß production is unclear. APP has been localized to multivesicular bodies (MVBs) where sorting of APP onto intraluminal vesicles (ILVs) could promote amyloidogenic processing, or reduce Aß production or accumulation by sorting APP and processing products to lysosomes for degradation. Here, we show that APP localizes to the ILVs of a subset of MVBs that also traffic EGF receptor (EGFR), and that it is delivered to lysosomes for degradation. Depletion of the endosomal sorting complexes required for transport (ESCRT) components, Hrs (also known as Hgs) or Tsg101, inhibited targeting of APP to ILVs and the subsequent delivery to lysosomes, and led to increased intracellular Aß accumulation. This was accompanied by dramatically decreased Aß secretion. Thus, the early ESCRT machinery has a dual role in limiting intracellular Aß accumulation through targeting of APP and processing products to the lysosome for degradation, and promoting Aß secretion.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Linhagem Celular Tumoral , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/genética , Endossomos/ultraestrutura , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Lisossomos/genética
10.
BMC Biol ; 14: 46, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296830

RESUMO

Exosomes are extracellular vesicles first described as such 30 years ago and since implicated in cell-cell communication and the transmission of disease states, and explored as a means of drug discovery. Yet fundamental questions about their biology remain unanswered. Here I explore what exosomes are, highlight the difficulties in studying them and explain the current definition and some of the outstanding issues in exosome biology.


Assuntos
Exossomos/metabolismo , Animais , Biomarcadores/metabolismo , Doença , Exossomos/ultraestrutura , Humanos , Modelos Biológicos
11.
Traffic ; 15(2): 197-211, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24279430

RESUMO

Multivesicular endosomes/bodies (MVBs) contain intraluminal vesicles (ILVs) that bud away from the cytoplasm. Multiple mechanisms of ILV formation have been identified, but the relationship between different populations of ILVs and MVBs remains unclear. Here, we show in HeLa cells that different ILV subpopulations can be distinguished by size. EGF stimulation promotes the formation of large ESCRT-dependent ILVs, whereas depletion of the ESCRT-0 component, Hrs, promotes the formation of a uniformly sized population of small ILVs, the formation of which requires CD63. CD63 has previously been implicated in ESCRT-independent sorting of PMEL in MVBs and transfected PMEL is present on the small ILVs that form on Hrs depletion. Upregulation of CD63-dependent ILV formation by Hrs depletion indicates that Hrs and CD63 regulate competing machineries required for the generation of distinct ILV subpopulations. Taken together our results indicate that ILV size is influenced by their cargo and mechanism of formation and suggest a competitive relationship between ESCRT-dependent and -independent mechanisms of ILV formation within single MVBs.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Corpos Multivesiculares/metabolismo , Fosfoproteínas/metabolismo , Tetraspanina 30/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Células HeLa , Humanos , Corpos Multivesiculares/efeitos dos fármacos , Corpos Multivesiculares/ultraestrutura , Transporte Proteico , Antígeno gp100 de Melanoma/metabolismo
12.
Acta Neuropathol ; 130(4): 511-23, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26358247

RESUMO

Mutations in the charged multivesicular body protein 2B (CHMP2B) cause frontotemporal dementia (FTD). We report that mice which express FTD-causative mutant CHMP2B at physiological levels develop a novel lysosomal storage pathology characterised by large neuronal autofluorescent aggregates. The aggregates are an early and progressive pathology that occur at 3 months of age and increase in both size and number over time. These autofluorescent aggregates are not observed in mice expressing wild-type CHMP2B, or in non-transgenic controls, indicating that they are a specific pathology caused by mutant CHMP2B. Ultrastructural analysis and immuno- gold labelling confirmed that they are derived from the endolysosomal system. Consistent with these findings, CHMP2B mutation patient brains contain morphologically similar autofluorescent aggregates. These aggregates occur significantly more frequently in human CHMP2B mutation brain than in neurodegenerative disease or age-matched control brains. These data suggest that lysosomal storage pathology is the major neuronal pathology in FTD caused by CHMP2B mutation. Recent evidence suggests that two other genes associated with FTD, GRN and TMEM106B are important for lysosomal function. Our identification of lysosomal storage pathology in FTD caused by CHMP2B mutation now provides evidence that endolysosomal dysfunction is a major degenerative pathway in FTD.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Demência Frontotemporal/metabolismo , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Mutação , Neurônios/metabolismo , Neurônios/patologia , Multimerização Proteica
13.
J Extracell Vesicles ; 13(2): e12412, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38339765

RESUMO

The COVID-19 pandemic highlighted the clear risk that zoonotic viruses pose to global health and economies. The scientific community responded by developing several efficacious vaccines which were expedited by the global need for vaccines. The emergence of SARS-CoV-2 breakthrough infections highlights the need for additional vaccine modalities to provide stronger, long-lived protective immunity. Here we report the design and preclinical testing of small extracellular vesicles (sEVs) as a multi-subunit vaccine. Cell lines were engineered to produce sEVs containing either the SARS-CoV-2 Spike receptor-binding domain, or an antigenic region from SARS-CoV-2 Nucleocapsid, or both in combination, and we tested their ability to evoke immune responses in vitro and in vivo. B cells incubated with bioengineered sEVs were potent activators of antigen-specific T cell clones. Mice immunised with sEVs containing both sRBD and Nucleocapsid antigens generated sRBD-specific IgGs, nucleocapsid-specific IgGs, which neutralised SARS-CoV-2 infection. sEV-based vaccines allow multiple antigens to be delivered simultaneously resulting in potent, broad immunity, and provide a quick, cheap, and reliable method to test vaccine candidates.


Assuntos
COVID-19 , Vesículas Extracelulares , Vacinas , Animais , Humanos , Camundongos , SARS-CoV-2 , Pandemias
14.
Nat Commun ; 14(1): 3086, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248224

RESUMO

Retromer controls cellular homeostasis through regulating integral membrane protein sorting and transport and by controlling maturation of the endo-lysosomal network. Retromer dysfunction, which is linked to neurodegenerative disorders including Parkinson's and Alzheimer's diseases, manifests in complex cellular phenotypes, though the precise nature of this dysfunction, and its relation to neurodegeneration, remain unclear. Here, we perform an integrated multi-omics approach to provide precise insight into the impact of Retromer dysfunction on endo-lysosomal health and homeostasis within a human neuroglioma cell model. We quantify widespread changes to the lysosomal proteome, indicative of broad lysosomal dysfunction and inefficient autophagic lysosome reformation, coupled with a reconfigured cell surface proteome and secretome reflective of increased lysosomal exocytosis. Through this global proteomic approach and parallel transcriptomic analysis, we provide a holistic view of Retromer function in regulating lysosomal homeostasis and emphasise its role in neuroprotection.


Assuntos
Multiômica , Neuroproteção , Humanos , Proteoma/metabolismo , Proteômica , Endossomos/metabolismo , Transporte Proteico/fisiologia , Lisossomos/metabolismo
15.
bioRxiv ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37693487

RESUMO

Alveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant1-3. AT2 dysfunction underlies many lung diseases including interstitial lung disease (ILD), in which some inherited forms result from mislocalisation of surfactant protein C (SFTPC) variants4,5. Disease modelling and dissection of mechanisms remains challenging due to complexities in deriving and maintaining AT2 cells ex vivo. Here, we describe the development of expandable adult AT2-like organoids derived from human fetal lung which are phenotypically stable, can differentiate into AT1-like cells and are genetically manipulable. We use these organoids to test key effectors of SFTPC maturation identified in a forward genetic screen including the E3 ligase ITCH, demonstrating that their depletion phenocopies the pathological SFTPC redistribution seen for the SFTPC-I73T variant. In summary, we demonstrate the development of a novel alveolar organoid model and use it to identify effectors of SFTPC maturation necessary for AT2 health.

16.
iScience ; 26(7): 107056, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37346049

RESUMO

The prevalence and strength of serological responses mounted toward SARS-CoV-2 proteins other than nucleocapsid (N) and spike (S), which may be of use as additional serological markers, remains underexplored. Using high-content microscopy to assess antibody responses against full-length StrepTagged SARS-CoV-2 proteins, we found that 85% (166/196) of unvaccinated individuals with RT-PCR confirmed SARS-CoV-2 infections and 74% (31/42) of individuals infected after being vaccinated developed detectable IgG against the structural protein M, which is higher than previous estimates. Compared with N antibodies, M IgG displayed a shallower time-dependent decay and greater specificity. Sensitivity for SARS-CoV-2 seroprevalence was enhanced when N and M IgG detection was combined. These findings indicate that screening for M seroconversion may be a good approach for detecting additional vaccine breakthrough infections and highlight the potential to use HCM as a rapidly deployable method to identify the most immunogenic targets of newly emergent pathogens.

17.
iScience ; 26(11): 108080, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37860693

RESUMO

The SARS-CoV-2 genome encodes a multitude of accessory proteins. Using comparative genomic approaches, an additional accessory protein, ORF3c, has been predicted to be encoded within the ORF3a sgmRNA. Expression of ORF3c during infection has been confirmed independently by ribosome profiling. Despite ORF3c also being present in the 2002-2003 SARS-CoV, its function has remained unexplored. Here we show that ORF3c localizes to mitochondria, where it inhibits innate immunity by restricting IFN-ß production, but not NF-κB activation or JAK-STAT signaling downstream of type I IFN stimulation. We find that ORF3c is inhibitory after stimulation with cytoplasmic RNA helicases RIG-I or MDA5 or adaptor protein MAVS, but not after TRIF, TBK1 or phospho-IRF3 stimulation. ORF3c co-immunoprecipitates with the antiviral proteins MAVS and PGAM5 and induces MAVS cleavage by caspase-3. Together, these data provide insight into an uncharacterized mechanism of innate immune evasion by this important human pathogen.

18.
Biochem Soc Trans ; 40(2): 464-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22435831

RESUMO

Activated EGFR (epidermal growth factor receptor) undergoes ESCRT (endosomal sorting complex required for transport)-mediated sorting on to ILVs (intraluminal vesicles) of endosomes before degradation in the lysosome. Sorting of endocytosed EGFR on to ILVs removes the catalytic domain of the EGFR from the cytoplasm, resulting in termination of receptor signalling. EGFR signalling is also subject to down-regulation through receptor dephosphorylation by the ER (endoplasmic reticulum)-localized PTP1B (protein tyrosine phosphatase 1B). PTP1B on the cytoplasmic face of the ER interacts with endocytosed EGFR via direct membrane contacts sites between the ER and endosomes. In the present paper, we review the relationship between ER-endosome membrane contact sites and ILV formation, and their potential role in the regulation of EGFR sorting on to ILVs, through PTP1B-mediated dephosphorylation of both EGFR and components of the ESCRT machinery.


Assuntos
Retículo Endoplasmático/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Membranas Intracelulares/metabolismo , Corpos Multivesiculares/metabolismo , Animais , Retículo Endoplasmático/efeitos dos fármacos , Complexos Endossomais de Distribuição Requeridos para Transporte/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Humanos , Membranas Intracelulares/efeitos dos fármacos , Corpos Multivesiculares/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo
19.
Nat Commun ; 13(1): 1609, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338134

RESUMO

Ultrastructural studies of SARS-CoV-2 infected cells are crucial to better understand the mechanisms of viral entry and budding within host cells. Here, we examined human airway epithelium infected with three different isolates of SARS-CoV-2 including the B.1.1.7 variant by transmission electron microscopy and tomography. For all isolates, the virus infected ciliated but not goblet epithelial cells. Key SARS-CoV-2 entry molecules, ACE2 and TMPRSS2, were found to be localised to the plasma membrane including microvilli but excluded from cilia. Consistently, extracellular virions were seen associated with microvilli and the apical plasma membrane but rarely with ciliary membranes. Profiles indicative of viral fusion where tomography showed that the viral membrane was continuous with the apical plasma membrane and the nucleocapsids diluted, compared with unfused virus, demonstrate that the plasma membrane is one site of entry where direct fusion releasing the nucleoprotein-encapsidated genome occurs. Intact intracellular virions were found within ciliated cells in compartments with a single membrane bearing S glycoprotein. Tomography showed concentration of nucleocapsids round the periphery of profiles strongly suggestive of viral budding into these compartments and this may explain how virions gain their S glycoprotein containing envelope.


Assuntos
COVID-19 , SARS-CoV-2 , Epitélio/metabolismo , Humanos , Peptidil Dipeptidase A/metabolismo
20.
bioRxiv ; 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33442692

RESUMO

The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrated that SARS-CoV-2 infection causes tetherin downregulation, and that tetherin depletion from cells enhances SARS-CoV-2 viral titres. We investigated the potential viral proteins involved in abrogating tetherin function and found that SARS-CoV-2 ORF3a reduces tetherin localisation within biosynthetic organelles via reduced retrograde recycling and increases tetherin localisation to late endocytic organelles. By removing tetherin from the Coronavirus budding compartments, ORF3a enhances virus release. We also found expression of Spike protein caused a reduction in cellular tetherin levels. Our results confirm that tetherin acts as a host restriction factor for SARS-CoV-2 and highlight the multiple distinct mechanisms by which SARS-CoV-2 subverts tetherin function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa