Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 197(6): 1040-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25561717

RESUMO

Phenolic glycolipids (PGLs) are polyketide synthase-derived glycolipids unique to pathogenic mycobacteria. PGLs are found in several clinically relevant species, including various Mycobacterium tuberculosis strains, Mycobacterium leprae, and several nontuberculous mycobacterial pathogens, such as M. marinum. Multiple lines of investigation implicate PGLs in virulence, thus underscoring the relevance of a deep understanding of PGL biosynthesis. We report mutational and biochemical studies that interrogate the mechanism by which PGL biosynthetic intermediates (p-hydroxyphenylalkanoates) synthesized by the iterative polyketide synthase Pks15/1 are transferred to the noniterative polyketide synthase PpsA for acyl chain extension in M. marinum. Our findings support a model in which the transfer of the intermediates is dependent on a p-hydroxyphenylalkanoyl-AMP ligase (FadD29) acting as an intermediary between the iterative and the noniterative synthase systems. Our results also establish the p-hydroxyphenylalkanoate extension ability of PpsA, the first-acting enzyme of a multisubunit noniterative polyketide synthase system. Notably, this noniterative system is also loaded with fatty acids by a specific fatty acyl-AMP ligase (FadD26) for biosynthesis of phthiocerol dimycocerosates (PDIMs), which are nonglycosylated lipids structurally related to PGLs. To our knowledge, the partially overlapping PGL and PDIM biosynthetic pathways provide the first example of two distinct, pathway-dedicated acyl-AMP ligases loading the same type I polyketide synthase system with two alternate starter units to produce two structurally different families of metabolites. The studies reported here advance our understanding of the biosynthesis of an important group of mycobacterial glycolipids.


Assuntos
Membrana Celular/metabolismo , Glicolipídeos/biossíntese , Mycobacterium marinum/metabolismo , Fenóis/metabolismo , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Regulação Bacteriana da Expressão Gênica/fisiologia , Glicolipídeos/química , Glicolipídeos/metabolismo , Estrutura Molecular , Mutação , Mycobacterium marinum/genética , Fenóis/química , Estrutura Terciária de Proteína , Especificidade da Espécie
2.
J Biol Chem ; 286(28): 24616-25, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21592957

RESUMO

Phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs) are structurally related lipids noncovalently bound to the outer cell wall layer of Mycobacterium tuberculosis, Mycobacterium leprae, and several opportunistic mycobacterial human pathogens. PDIMs and PGLs are important effectors of virulence. Elucidation of the biosynthesis of these complex lipids will not only expand our understanding of mycobacterial cell wall biosynthesis, but it may also illuminate potential routes to novel therapeutics against mycobacterial infections. We report the construction of an in-frame deletion mutant of tesA (encoding a type II thioesterase) in the opportunistic human pathogen Mycobacterium marinum and the characterization of this mutant and its corresponding complemented strain control in terms of PDIM and PGL production. The growth and antibiotic susceptibility of these strains were also probed and compared with the parental wild-type strain. We show that deletion of tesA leads to a mutant that produces only traces of PDIMs and PGLs, has a slight growth yield increase and displays a substantial hypersusceptibility to several antibiotics. We also provide a robust model for the three-dimensional structure of M. marinum TesA (TesAmm) and demonstrate that a Ser-to-Ala substitution in the predicted catalytic Ser of TesAmm renders a mutant that recapitulates the phenotype of the tesA deletion mutant. Overall, our studies demonstrate a critical role for tesA in mycobacterial biology, advance our understanding of the biosynthesis of an important group of polyketide synthase-derived mycobacterial lipids, and suggest that drugs aimed at blocking PDIM and/or PGL production might synergize with antibiotic therapy in the control of mycobacterial infections.


Assuntos
Parede Celular/enzimologia , Farmacorresistência Bacteriana/fisiologia , Ácido Graxo Sintases/metabolismo , Glicolipídeos/biossíntese , Lipídeos/biossíntese , Mycobacterium/enzimologia , Tioléster Hidrolases/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Parede Celular/genética , Desenho de Fármacos , Ácido Graxo Sintases/genética , Deleção de Genes , Glicolipídeos/genética , Humanos , Lipídeos/genética , Mycobacterium/genética , Mycobacterium/patogenicidade , Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/enzimologia , Infecções por Mycobacterium/genética , Tioléster Hidrolases/genética
3.
Microbiology (Reading) ; 158(Pt 5): 1379-1387, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22361940

RESUMO

Phenolic glycolipids (PGLs) are non-covalently bound components of the outer membrane of many clinically relevant mycobacterial pathogens, and play important roles in pathogen biology. We report a mutational analysis that conclusively demonstrates that the conserved acyltransferase-encoding gene papA5 is essential for PGL production. In addition, we provide an in vitro acyltransferase activity analysis that establishes proof of principle for the competency of PapA5 to utilize diol-containing polyketide compounds of mycobacterial origin as acyl-acceptor substrates. Overall, the results reported herein are in line with a model in which PapA5 catalyses the acylation of diol-containing polyketides to form PGLs. These studies advance our understanding of the biosynthesis of an important group of mycobacterial glycolipids and suggest that PapA5 might be an attractive target for exploring the development of antivirulence drugs.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Glicolipídeos/biossíntese , Mycobacterium marinum/enzimologia , Aciltransferases/genética , Proteínas de Bactérias/genética , Análise Mutacional de DNA , DNA Bacteriano/genética , Lipoilação , Mutação , Mycobacterium marinum/genética , Deleção de Sequência
4.
BMC Microbiol ; 12: 118, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22726990

RESUMO

BACKGROUND: Glycopeptidolipids (GPLs) are among the major free glycolipid components of the outer membrane of several saprophytic and clinically-relevant Mycobacterium species. The architecture of GPLs is based on a constant tripeptide-amino alcohol core of nonribosomal peptide synthetase origin that is N-acylated with a 3-hydroxy/methoxy acyl chain synthesized by a polyketide synthase and further decorated with variable glycosylation patterns built from methylated and acetylated sugars. GPLs have been implicated in many aspects of mycobacterial biology, thus highlighting the significance of gaining an understanding of their biosynthesis. Our bioinformatics analysis revealed that every GPL biosynthetic gene cluster known to date contains a gene (referred herein to as gplH) encoding a member of the MbtH-like protein family. Herein, we sought to conclusively establish whether gplH was required for GPL production. RESULTS: Deletion of gplH, a gene clustered with nonribosomal peptide synthetase-encoding genes in the GPL biosynthetic gene cluster of Mycobacterium smegmatis, produced a GPL deficient mutant. Transformation of this mutant with a plasmid expressing gplH restored GPL production. Complementation was also achieved by plasmid-based constitutive expression of mbtH, a paralog of gplH found in the biosynthetic gene cluster for production of the siderophore mycobactin of M. smegmatis. Further characterization of the gplH mutant indicated that it also displayed atypical colony morphology, lack of sliding motility, altered capacity for biofilm formation, and increased drug susceptibility. CONCLUSIONS: Herein, we provide evidence formally establishing that gplH is essential for GPL production in M. smegmatis. Inactivation of gplH also leads to a pleiotropic phenotype likely to arise from alterations in the cell envelope due to the lack of GPLs. While genes encoding MbtH-like proteins have been shown to be needed for production of siderophores and antibiotics, our study presents the first case of one such gene proven to be required for production of a cell wall component. Furthermore, our results provide the first example of a mbtH-like gene with confirmed functional role in a member of the Mycobacterium genus. Altogether, our findings demonstrate a critical role of gplH in mycobacterial biology and advance our understanding of the genetic requirements for the biosynthesis of an important group of constituents of the mycobacterial outer membrane.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Glicolipídeos/biossíntese , Glicopeptídeos/biossíntese , Lipopeptídeos/biossíntese , Mycobacterium smegmatis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Deleção de Genes , Teste de Complementação Genética , Locomoção , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/fisiologia , Alinhamento de Sequência
5.
J Bacteriol ; 193(21): 5905-13, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21873494

RESUMO

The mycobactin siderophore system is present in many Mycobacterium species, including M. tuberculosis and other clinically relevant mycobacteria. This siderophore system is believed to be utilized by both pathogenic and nonpathogenic mycobacteria for iron acquisition in both in vivo and ex vivo iron-limiting environments, respectively. Several M. tuberculosis genes located in a so-called mbt gene cluster have been predicted to be required for the biosynthesis of the core scaffold of mycobactin based on sequence analysis. A systematic and controlled mutational analysis probing the hypothesized essential nature of each of these genes for mycobactin production has been lacking. The degree of conservation of mbt gene cluster orthologs remains to be investigated as well. In this study, we sought to conclusively establish whether each of nine mbt genes was required for mycobactin production and to examine the conservation of gene clusters orthologous to the M. tuberculosis mbt gene cluster in other bacteria. We report a systematic mutational analysis of the mbt gene cluster ortholog found in Mycobacterium smegmatis. This mutational analysis demonstrates that eight of the nine mbt genes investigated are essential for mycobactin production. Our genome mining and phylogenetic analyses reveal the presence of orthologous mbt gene clusters in several bacterial species. These gene clusters display significant organizational differences originating from an intricate evolutionary path that might have included horizontal gene transfers. Altogether, the findings reported herein advance our understanding of the genetic requirements for the biosynthesis of an important mycobacterial secondary metabolite with relevance to virulence.


Assuntos
Proteínas de Bactérias/genética , Vias Biossintéticas/genética , Família Multigênica , Mycobacterium smegmatis/genética , Oxazóis/metabolismo , Filogenia , Sequência Conservada , Análise Mutacional de DNA , Ordem dos Genes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa